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Abstract
Cellular	senescence	is	acknowledged	as	a	key	contributor	to	organismal	ageing	and	
late-	life	 disease.	 Though	 popular,	 the	 study	 of	 senescence	 in	 vitro	 can	 be	 compli-
cated	 by	 the	 prolonged	 and	 asynchronous	 timing	 of	 cells	 committing	 to	 it	 and	 by	
its	 paracrine	 effects.	 To	 address	 these	 issues,	we	 repurposed	 a	 small	molecule	 in-
hibitor,	 inflachromene	 (ICM),	 to	 induce	 senescence	 to	human	primary	 cells.	Within	
6 days	of	treatment	with	ICM,	senescence	hallmarks,	including	the	nuclear	eviction	of	
HMGB1	and	-	B2,	are	uniformly	induced	across	IMR90	cell	populations.	By	generat-
ing	and	comparing	various	high	throughput	datasets	from	ICM-	induced	and	replica-
tive	senescence,	we	uncovered	a	high	similarity	of	the	two	states.	Notably	though,	
ICM	suppresses	 the	pro-	inflammatory	secretome	associated	with	senescence,	 thus	
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1  |  INTRODUC TION

From	the	onset	of	development	until	 late-	life	 stages,	human	cells	
encounter	multiple	 signaling	 and	 stress	 cues.	Many	 of	 these	 can	
lead	to	the	induction	of	senescent	phenotypes	that	commit	cells	to	
an	irreversible	growth	arrest	and	are	inextricably	linked	with	ageing	
(Gorgoulis	et	al.,	2019;	López-	Otín	et	al.,	2013;	Schmeer	et	al.,	2019).	
In	 fact,	 clearing	 senescent	 cells	 in	 vivo	 leads	 to	prolonged	health	
and	 lifespan	 (Baker	 et	 al.,	2011,	2016;	Wang	 et	 al.,	2021,	2022).	
Depending	 on	 the	 initial	 trigger,	 senescent	 responses	 can	 be	
grouped	 into	various	types	 like	replicative	senescence	 (RS)	occur-
ring	 via	 telomere	 attrition,	 oncogene	 induced-	senescence	 (OIS)	
due	to	oncogenic	activation,	stress-	induced	premature	senescence	
(SIPS)	due	to	oxidative	stress,	and	DNA	damage	or	therapy-	induced	
senescence	 (TIS)	 following	 chemo-	/radiotherapy	 (Campisi,	 2013).	
All	give	rise	to	distinct	gene	expression	programs,	which	however	
converge to an underlying transcriptional signature associated 
with	cell	cycle	control	and	transcriptional	remodeling	(Hernandez-	
Segura	et	al.,	2017).

Apart	 from	 the	pronounced	cell	 cycle	 arrest,	 there	are	different	
genomic	 hallmarks	 of	 the	 commitment	 to	 senescence.	 For	 example,	
models	of	OIS	show	formation	of	large	senescence-	associated	heter-
ochromatic	foci	(SAHFs)	(Narita	et	al.,	2003),	which	involve	the	dissoci-
ation	of	heterochromatin	from	the	lamina,	the	redistribution	of	Lamin	
B1	(Sadaie	et	al.,	2013;	Shah	et	al.,	2013)	and	nuclear	pore	components	
(Boumendil	et	al.,	2019),	as	well	as	an	interplay	between	DNMT1	and	
HMGA2	(Sati	et	al.,	2020).	These	effects	are	also	reflected	on	changes	
in	the	three-	dimensional	(3D)	organization	of	chromosomes	(Chandra	
et	al.,	2015;	Sati	et	al.,	2020),	with	many	have	also	being	recorded	in	a	
model	of	DNA	damage-	induced	senescence	(Zhang	et	al.,	2021).

In	RS,	DNMT1	is	linked	to	focal	hypomethylation	(Cruickshanks	
et	al.,	2013),	and	HMGB	(rather	than	HMGA)	proteins	seem	to	play	
a	 central	 role	 as	 they	 are	 quantitatively	 depleted	 from	 senescent	
cell	 nuclei	 (Papantonis,	2021).	 The	 loss	 of	HMGB1	was	 shown	 to	
affect	both	chromatin	 reorganization	and	mRNA	splicing	upon	RS	
entry	 (Sofiadis	 et	 al.,	2021),	while	 that	 of	HMGB2	was	 causal	 for	
heterochromatin	imbalance	and	the	formation	of	large	senescence-	
induced	CTCF	clusters	(SICCs)	(Zirkel	et	al.,	2018).	Cells	maintained	
in	RS	long-	term	(i.e.,	in	“deep”	senescence)	display	more	pronounced	
changes	 in	 3D	 genome	 organization,	mostly	 compaction	 of	 chro-
mosomal	arms	and	changes	between	compartments	of	active	and	
inactive	chromatin	(Criscione,	Teo,	et	al.,	2016)	to	suppress	gene	ex-
pression	and	activate	transposable	elements	(De	Cecco	et	al.,	2013).	
This	 is	 in	 line	 with	 spurious	 (Sen	 et	 al.,	 2023)	 and	 accelerated	
transcription	 in	 senescence	 (Debès	 et	 al.,	 2023),	 with	 an	 overall	

compromised	ability	to	transcribe	(Zirkel	et	al.,	2018),	as	well	as	with	
a	transcription-	dependent	reorganization	of	chromatin	loops	(Olan	
et	al.,	2020).

A	key	outcome	of	the	senescent	gene	expression	program	is	the	
production	and	secretion	of	a	complex	and	cell	type-	specific	mixture	
of	 pro-	inflammatory	 factors:	 the	 senescence-	associated	 secretory	
phenotype	 (SASP)	 (Acosta	et	al.,	2013;	Kang	et	al.,	2015;	Laberge	
et	al.,	2015;	Wiley	et	al.,	2016).	SASP	factors	act	in	an	autocrine	and	
a	paracrine	manner	(Lopes-	Paciencia	et	al.,	2019),	and	mediate	both	
beneficial	 (e.g.,	 wound	 healing)	 and	 detrimental	 effects	 of	 senes-
cence	 (e.g.,	 chronic	 inflammation	 and	 tumorigenesis)	 (Sun,	 Coppé,	
et	al.,	2018;	Sun,	Yu,	et	al.,	2018).	However,	the	production	of	SASP	
and	 other	 secondary	 signals	 (e.g.,	 Notch	 in	 OIS;	 Teo	 et	 al.,	 2019)	
by senescent cells emerging in a population can both promote and 
limit	senescence	spread	(Martin	et	al.,	2023)	 in	a	manner	that	ulti-
mately	leads	to	a	large	heterogeneity	of	individual	cell	states	(Chan	
et	al.,	2022;	Teo	et	al.,	2019;	Wiley	et	al.,	2017;	Zirkel	et	al.,	2018).

This	 pronounced	 heterogeneity,	 together	with	 the	 asynchrony	
in	 senescence	 commitment	 by	 individual	 cells	 and	 the	 extended	
culture	periods	needed	to	reach	replicative	senescence,	complicate	
studies	 of	 the	 core	 of	 the	 senescent	 program.	 Here,	 we	 address	
these	caveats	by	 the	 introduction	of	 a	novel	 and	 robust	model	of	
chemically	induced	senescence	via	the	repurposing	of	the	small	mol-
ecule	 inhibitor	 ICM	 (Lee	 et	 al.,	2014).	We	 show	 that	 ICM	 induces	
senescence	rapidly	(within	<6 days)	and	homogeneously	in	the	pop-
ular	fetal	lung	fibroblast	(IMR90)	cell	model,	while	also	constraining	
SASP	production	and	 its	paracrine	effects.	We	provide	a	compre-
hensive	data	resource	by	characterizing	ICM-	induced	senescence	in	
order	to	facilitate	its	adoption	by	the	broader	community.

2  |  RESULTS

2.1  |  ICM induces a senescence- like phenotype in 
human fibroblasts

Inflachromene	 (ICM)	was	 initially	 discovered	 as	 a	 direct	 binder	 of	
HMGB1/-	B2	proteins	in	a	broad	screen	of	compounds,	and	charac-
terized	 as	 a	 potent	 blocker	 of	 their	 cytoplasmic	 translocation	 and	
extracellular	release.	As	a	result,	ICM	restricted	inflammatory	phe-
notypes	 in	vitro	and	in	vivo	to	exert	a	neuroprotective	effect	 (Lee	
et	al.,	2014).	However,	ICM	was	only	tested	in	the	neural	context	and	
for	only	up	to	24 h.	We	subjected	different	isolates	of	fetal	human	
lung	 fibroblasts	 (IMR90),	 one	 of	 the	most	 popular	models	 for	 se-
nescence	studies	(Coppe	et	al.,	2006;	Demaria	et	al.,	2014;	Harley	
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alleviating	most	 paracrine	 effects.	 In	 summary,	 ICM	 rapidly	 and	 synchronously	 in-
duces	a	senescent-	like	phenotype	thereby	allowing	the	study	of	 its	core	regulatory	
program	without	confounding	heterogeneity.
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et	 al.,	1990;	Hayflick	&	Moorhead,	1961;	Krtolica	 et	 al.,	2001),	 to	
continuous	 exposure	 to	 different	 ICM	 concentrations.	 Treatment	
with	10 μM	(but	not	5 μM)	ICM	led	to	growth	arrest	within	<4 days.	

Notably,	removing	ICM	from	the	IMR90	growth	medium	after	6 days	
of	treatment	did	not	result	 in	regrowth,	while	removal	after	3 days	
of	 treatment	 did	 (Figure 1a).	 Such	 an	 effect	 of	 longer	 term	 ICM	

F I G U R E  1 ICM	treatment	induces	a	senescent-	like	phenotype.	(a)	Mean	proliferation	rates	(±SEM	from	three	independent	replicates)	of	
DMSO-		and	ICM-	treated	IMR90	for	3–6 days	using	automated	live-	cell	imaging.	*p < 0.01,	unpaired	two-	tailed	Student's	t	test	at	240 h.	(b)	
Representative	widefield	images	of	proliferating	(top)	and	610CP-	C6-	ICM-	treated	IMR90	(bottom)	with	DNA	counterstained	with	Hoechst.	
The	overlap	between	the	two	signals	was	assessed	via	a	linescan.	Bar,	5 μm.	(c)	Proliferating,	ICM-	treated	and	senescent	IMR90	assayed	for	β-	
galactosidase	activity.	ICM-	treated	and	senescent	cells	appeared	darker,	indicative	of	their	senescent	state.	(d)	FACS	cell	cycle	profiles	of	PI-	
stained	proliferating	(DMSO),	senescent	or	ICM-	treated	IMR90	for	3	and	6 days.	(e)	Representative	images	of	IMR90	showing	treated	or	not	
with	ICM	for	6 days	and	immunostained	for	HMGB2	and	p21.	Bars,	6 μm.	Violin	plots	(right)	quantify	changes	in	the	levels	of	the	two	markers.	
N,	number	of	cells	analyzed	per	each	condition.	*p < 0.05,	two-	tailed	Wilcoxon-	Mann–Whitney	test.	(f)	As	in	panel	e,	but	immunostained	for	
HMGB1	and	CTCF.	(g)	As	in	panel	e,	but	immunostained	for	HP1α	and	H3K27me3.	(h)	Western	blot	analysis	of	CTCF,	HMGB2,	EZH2	and	
histone	H3	in	proliferating	(DMSO)	and	6-	day	ICM-	treated	IMR90;	α-	tubulin	levels	provide	a	loading	control.	(i)	Mean	mRNA	levels	(±SD	from	
two	independent	isolates)	of	selected	senescence	marker	genes	in	proliferating	(DMSO)	and	6-	day	ICM-	treated	IMR90.	*p < 0.05,	unpaired	
two-	tailed	Student's	t	test.	(j)	Mean	ChIP-	qPCR	enrichment	levels	(±SD	from	two	independent	isolates)	at	selected	genomic	positions	(a–f)	in	
proliferating	(DMSO)	and	3-		or	6-	day	ICM-	treated	IMR90.	*p < 0.05,	unpaired	two-	tailed	Student's	t test.
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treatment	was	unexpected	and	prompted	us	to	ask	whether	it	actu-
ally	induced	a	senescent-	like	state	to	the	cells.

First,	 we	 synthesized	 a	 610CP-	C6-	tagged	 version	 of	 ICM	 (see	
Section	4)	to	verify	that	it	indeed	enters	IMR90	nuclei	and	localizes	to	
chromatin,	where	HMGBs	reside;	both	could	be	confirmed	microscop-
ically	(Figure 1b).	Next,	we	stained	control	and	6-	day	ICM-	treated	cells	
for	β-	galactosidase	activity,	a	marker	of	senescence	(Dimri	et	al.,	1995).	
ICM-	treated	 cells	 stained	 essentially	 uniformly	 as	 SA-	β-	Gal-	positive,	
more	than	IMR90	from	the	same	isolate	driven	to	senescence	by	se-
rial	passaging,	although	they	do	not	present	with	the	same	spindle-	like	
morphology	 (Figure 1c).	 FACS	 analysis	 showed	 that	 ICM	 treatment,	
already	after	3 days,	arrested	IMR90	in	late	S-	phase	(24.4%	and	29.2%	
after	 3-		 and	 6-	day	 treatment,	 respectively,	 compared	 to	 2.4%	 in	
DMSO-	treated	cells),	an	effect	comparable	to	the	S-	phase	accumula-
tion	seen	in	replicatively	senescent	cells	(23.6%;	Figure 1d).

It	 has	 been	 established	 that	 the	 nuclear	 depletion	 of	HMGB1	
and	 -	B2	 from	 the	 cell	 nucleus	 is	 a	 robust	 indicator	 of	 replicative	
senescence	 entry	 by	 different	 primary	 human	 cell	 types	 (Davalos	
et	al.,	2013;	Sofiadis	et	al.,	2021;	Zirkel	et	al.,	2018).	We	could	show	
that	 pronounced	 nuclear	 loss	 of	 HMGBs	 is	 also	 achieved	 by	 ICM	
treatment	of	IMR90	(Figure 1e,f),	together	with	the	expected	reduc-
tion	 in	H3K27me3	 levels	 (Figure 1g).	 These	 effects	were	 coupled	
to	the	upregulation	of	senescence	marker	p21	(Figure 1e),	 the	for-
mation	of	senescence-	induced	CTCF	clusters	(SICCs;	Figure 1f),	and	
the	emergence	of	HP1α	foci	(Figure 1g),	again,	much	like	what	has	
been	recorded	in	RS	(Zirkel	et	al.,	2018).	All	these	effects	could	be	
detected,	albeit	to	a	somewhat	smaller	extent,	upon	treatment	with	
ICM	for	3 days	 (Figure S1A,B),	when	growth	arrest	 is	not	yet	 irre-
versibly	 committed	 to	 (Figure 1a).	 This	 suggests	 that	HMGB1/-	B2	
loss	and	SICC	formation	are	early	events	on	the	path	to	senescence,	
as	previously	postulated	(Zirkel	et	al.,	2018).	Moreover,	ICM-	treated	
cells	did	not	accumulate	DNA	damage	as	assessed	by	activated	his-
tone γH2A.X	levels	(Figure S1C,D).

Senescence	induction	was	also	reflected	in	changes	at	the	pro-
tein	and	mRNA	levels	of	all	these	factors,	as	well	as	of	other	known	
senescence-	regulated	 genes	 like	 HDAC9,	 CCND2,	 and	 HMGA1 
(Figure 1h,i).	Finally,	using	ChIP-	qPCR	we	confirmed	loss	of	HMGB2	
chromatin	binding	upon	ICM	treatment	from	known	cognate	posi-
tions	in	RS-	IMR90	(Zirkel	et	al.,	2018)	at	both	topologically	associat-
ing	domain	(TADs)	boundaries	and	non-	boundary	regions	(Figure 1j).	
In	summary,	short-	term	ICM	treatment	of	IMR90	results	in	irrevers-
ible	growth	arrest,	as	well	as	in	phenotypic	changes	likening	those	
of	RS.

2.2  |  Automated imaging and classification of 
nuclear features changes in ICM- treated cells

Replicative senescence induces similar changes to the nuclear mor-
phology	of	different	primary	human	cell	types,	including	size	increase	
and	 a	 characteristic	 texture	 of	 DAPI	 chromatin	 staining	 (Sofiadis	
et	 al.,	2021;	 Zirkel	 et	 al.,	2018).	 Based	 on	 these	 observations,	we	
reasoned	that	ICM-	treated	cells	could	be	classified	as	regards	their	
senescence	state	via	imaging	of	their	nuclear	features.	To	this	end,	
we	 devised	 an	 automated	 imaging	 and	 classification	 workflow	 to	
process	images	of	>11,000	IMR90	cells	that	were	either	proliferat-
ing	(early-	passage),	senescent	or	treated	with	ICM	for	3–9 days.	Our	
workflow	used	 fixed	 cells	 counterstained	by	 SiR-	DNA	 to	 visualize	
chromatin.	Cells	were	identified	and	imaged	via	automated	confocal	
imaging,	while	super-	resolution	mid-	planes	of	individual	nuclei	were	
also	captured	using	the	platform's	STED	mode	(Figure 2a).	To	discard	
erroneous	detections,	STED	images	of	nuclei	were	filtered	using	a	
machine	 learning-	based	quality	control	script	achieving	95%	preci-
sion	in	identifying	“good”	versus	“bad	quality”	images	(Figure 2a; see 
Section	4	for	details).

We	extracted	GLCM	texture	 (e.g.,	homogeneity,	dissimilarity,	
energy,	and	angular	second	moment)	and	other	features	(e.g.,	area,	
eccentricity,	 and	mean	 intensity)	 from	each	STED	nuclear	 image	
that	passed	 this	QC	and	 from	full	nuclei	 in	confocal	 images,	and	
used	 them	 for	 t-	SNE	embedding	 (Figure 2b).	 In	parallel,	 features	
from	proliferating	and	replicatively	senescent	cells	were	used	 to	
train	 a	 Support	 Vector	Machine	 (SVM)	 classifier	 and	 assess	 the	
extent	 to	which	cells	 treated	with	 ICM	 for	different	numbers	of	
days	resembled	RS	ones.	Using	features	extracted	from	confocal	
images,	we	recorded	a	broad	range	of	nuclear	phenotypes.	t-	SNE	
embedding	showed	that	most	proliferating	cells	separate	from	se-
nescent	ones,	albeit	with	considerable	replicate	mixing	(Figure 2c).	
This	was	 in	 line	with	previous	single-	cell	 transcriptional	profiling	
that	identified	senescent-	like	cells	in	“young”	populations	and	vice	
versa	 (Zirkel	et	al.,	2018).	We	also	saw	3-	day	ICM-	treated	nuclei	
predominantly	 clustering	 away	 from	 senescent	 and	 proliferating	
ones	 (likely	 representing	 an	 intermediate	 state),	whereas	 6-		 and	
9-	day	 ICM-	treated	 IMR90	 were	 proximal	 to	 senescent	 rather	
than	 to	 3-	day	 or	 proliferating	 ones	 (Figure 2c).	 These	 patterns	
of	separation	also	manifested	 in	the	SVM-	based	classification	of	
ICM-	treated	cells.	Both	6-		and	9-	day-	treated	IMR90	classified	as	
senescent,	whereas	3-	days	ones	scored	as	ambiguous	(Figure 2d).	
No	 single	extracted	 feature	 sufficed	 for	exact	 classification,	but	

F I G U R E  2 An	automated	classifier	approach	for	assessing	senescent	cell	nuclear	morphology.	(a)	Overview	of	the	automated	imaging	and	
analysis	workflow.	Coarse-	resolution	confocal	stacks	were	acquired	in	a	tiled	fashion	and,	once	a	nucleus	of	sufficient	quality	was	detected,	
a	mid-	plane	STED	image	of	it	was	also	acquired.	GLCM	features	were	extracted	from	single	nuclei	from	confocal	(after	tile	stitching	and	
maximum	projection	of	z-	stacks)	or	STED	images	and	used	for	downstream	embedding	and	classification.	(b)	t-	SNE	embedding	of	features	
extracted	from	confocal	images	with	randomly	selected	example	images	from	proliferating	(orange),	senescent	(purple),	and	ICM-	treated	
cells	(turquoise)	shown.	Bar,	5 μm.	(c)	As	in	panel	b,	but	highlighting	proliferating,	senescent	and	3-		or	6-	day	ICM-	treated	cells	of	different	
replicates.	(d)	Confusion	matrix	showing	the	fraction	of	ICM-	treated	cells	classified	as	similar	to	proliferating	or	senescent	cells	using	an	SVM	
classifier	trained	on	confocal-		(top)	or	STED-	imaged	nuclear	features	(bottom).	(e)	Box	plots	showing	the	distribution	of	nuclear	size	(left),	
GLCM	energy	values	(in	a	4-	pixel	distance	along	the	x-	axis;	middle),	and	GLCM	dissimilarity	(in	a	2-	pixel	distance	along	the	y-	axis;	right)	in	
confocal	images	of	proliferating,	senescent,	3-		or	6-	/9-	day	ICM-	treated	cells.
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increasing	nuclear	size,	as	well	as	changes	in	abstract	features	like	
GLCM	 energy	 and	 dissimilarity,	 appeared	 to	 better	 discriminate	
6-		 and	9-	day	 ICM-	treated	cells	 (Figure 2e).	Notably,	when	STED	
images	 were	 used,	 sample-	to-	sample	 variation	 overshadowed	
phenotypic	differences	between	proliferating	and	senescent	nu-
clei	resulting	in	the	inconclusive	classification	of	ICM-	treated	cells	
(Figure 2d).	We	attribute	this	to	the	large	effects	that	even	small	
variance	in,	for	example,	DNA	staining	intensity	can	have	on	fine	
scale	details	captured	by	STED	nanoscopy,	as	was	also	observed	
in	a	deep	learning-	based	study	classifying	senescence	from	images	
of	nuclear-	stained	cells,	whereby	coarse	 features	provided	more	
predictive	power	than	finer	scale	ones	(Heckenbach	et	al.,	2022).	
Overall,	we	could	deduce	that	ICM	treatment	of	IMR90	produced	
nuclear	 features	 resembling	 those	 of	 senescent	 cells,	 most	 of	
which	exhibit	decreased	heterogeneity	(see	replicate	dispersal	 in	
Figure 2c).

2.3  |  ICM- induced gene expression changes 
resemble replicative senescence

We	followed	up	the	phenotypic	characterization	with	gene	expres-
sion	profiling	of	 ICM-	treated	IMR90.	First,	based	on	previous	data	
from	RS,	we	would	expect	overall	reduced	RNA	production	if	ICM-	
cells	 had	 indeed	 committed	 to	 senescence.	We	measured	 this	 by	
incorporating	EUTP	 into	nascent	RNA	with	a	short	pulse	 (7.5	min)	
and	visualizing	transcripts	using	an	A488	fluorescent	tag.	Following	
quantification	 of	 signal	 intensity	 in	 the	 different	 cellular	 compart-
ments,	we	saw	an	almost	twofold	drop	in	nuclear	and	nucleolar	RNA	
levels	 by	6 days	of	 ICM	 treatment,	 but	 only	 a	modest	 decrease	 in	
labelled	cytoplasmic	RNA.	This	resembled	the	progressive	drop	seen	
in	IMR90	passage	into	senescence	(Figure 3a).

Despite	 this	 documented	 drop,	 senescence	 entry	 is	 character-
ized	 by	 a	 distinct	 program	 involving	 both	 up-		 and	 downregulated	
genes	 (Hernandez-	Segura	 et	 al.,	 2017;	 Sofiadis	 et	 al.,	2021;	 Zirkel	
et	 al.,	 2018).	 We	 sequenced	 poly(A)+-	selected	 RNA	 (mRNA-	Seq)	
from	two	different	IMR90	isolates	treated	with	DMSO	(control)	or	
ICM	for	6 days.	We	found	~950	and	>1250	genes	to	be	significantly	
(padj < 0.05,	 log2FC > |0.6|)	 differentially	 expressed	 (Figure 3b,c).	

These	 genes	 could	 be	 linked	 to	 gene	ontology	 (GO)	 terms	 associ-
ated	with	landmark	senescence	pathways,	such	as	mitotic	cell	cycle	
regulation	 and	 growth	 factor	 response	 (for	 downregulated	 ones;	
Figure S2A)	or	ECM	organization	and	the	p53	pathway	(for	upreg-
ulated ones; Figure S2B).	 Surprisingly,	 and	 contrary	 to	 the	 promi-
nent	 pro-	inflammatory	 induction	 occurring	 in	 senescence	 (Coppé	
et	al.,	2010;	Sofiadis	et	al.,	2021),	we	found	inflammatory	activation	
via	TNFα/NF-	κB	and	interleukins	to	be	markedly	suppressed	by	ICM	
treatment	 (Figure S2A),	 suggesting	 suppression	 of	 the	 SASP.	 This	
agreed	with	 the	 anti-	inflammatory	mode-	of-	action	of	 ICM	 in	neu-
rons	(Lee	et	al.,	2014).	Along	these	lines,	a	prediction	of	transcription	
factors	 (TFs)	 that	regulate	these	differentially	expressed	genes	via	
TTRUST	(Han	et	al.,	2018)	revealed	an	expected	enrichment	for	p53	
and	E2F-	family	TFs	for	downregulated	genes,	but	also	strong	enrich-
ment	of	NF-	κB	subunits	(RELA,	NFKB1)	and	co-	regulators	(NFKBIA)	
involved	in	the	inflammatory	response	(Figure 3d).	Also,	chromatin-	
associated	gene	markers	known	to	be	regulated	upon	RS	entry	were	
similarly	affected	by	 ICM	treatment	with	the	notable	exception	of	
HMGA1	and	A2,	which	have	been	implicated	in	the	induction	of	het-
erochromatic	 foci	 in	 senescence	 and	 SASP	 regulation	 (Doubleday	
et	al.,	2020;	Narita	et	al.,	2006;	Parry	et	al.,	2018;	Sati	et	al.,	2020; 
Figure 3e).

Given	 that	 replicative	 senescence	 is	 a	 gene	 expression	 pro-
gram	 predominantly	 regulated	 at	 the	 level	 of	 transcription	
(Sofiadis	 et	 al.,	2021),	we	also	 sequenced	and	analyzed	nascent	
RNA	profiles	from	3-		and	6-	day	ICM-	treated	IMR90	via	our	“fac-
tory”	 RNA-	Seq	 approach	 (Caudron-	Herger	 et	 al.,	 2015).	 Using	
the	 same	 cutoffs	 as	 before,	 but	 analyzing	 intronic	 RNA	 levels	
(reflecting	direct	transcriptional	changes),	we	identified	343	and	
557	up-		 and	downregulated	 genes,	 respectively,	 at	 3 days	 post-	
ICM	 treatment.	These	numbers	 increased	 to	538	and	706	after	
6 days	of	treatment	(Figure 3f).	Despite	this	increase,	the	major-
ity	of	3-	day	differentially	 expressed	genes	 (i.e.,	 74%	of	up-		 and	
81%	of	 downregulated	 genes)	were	 also	 identified	 at	 the	6-	day	
mark	 (Figure 3g)	 in	 line	with	the	high	convergence	between	the	
two	time	points	(Figure S3A).	Both	sets	associated	with	GO	terms	
characteristic	of	RS	induction	(e.g.,	mitotic	cell	cycle,	p53	pathway,	
and	telomere	organization;	Figures S3B,C and S4A,B)	and	highly	
similar	 to	 those	obtained	by	mRNA-	Seq	analysis	 (Figure S2A,B).	

F I G U R E  3 Transcriptional	changes	in	ICM-	treated	human	lung	fibroblasts.	(a)	Quantification	of	nascent	EU-	RNA	levels	(by	
immunofluorescence)	in	IMR90	passaged	into	senescence	(left)	or	treated	with	ICM	(right).	*Significantly	different	to	starting	nuclear/
nucleolar levels; p < 0.05,	unpaired	two-	tailed	Student's	t	test.	(b)	Volcano	plot	showing	all	differentially	expressed	mRNAs	between	
proliferating	and	ICM-	treated	IMR90.	Significantly	up-		(orange;	>0.6 log2FC)	or	down-	regulated	ones	(green;	<−0.6	log2FC)	are	indicated.	(c)	
RNA-	Seq	profiles	in	the	CDK1 and CDKN1A	locus	from	proliferating,	3-		and	6-	day	ICM-	treated	IMR90s.	(d)	Heatmap	showing	transcription	
factors	predicted	to	regulate	genes	from	panel	C	based	on	motif	enrichment.	(e)	Heatmap	showing	changes	in	mRNA	levels	upon	senescence	
and	ICM	treatment	of	genes	encoding	selected	chromatin-	associated	factors.	For	each	gene	shown,	statistically	significant	expression	
changes	(log2FC)	were	recorded	in	at	least	one	condition.	(f)	Volcano	plot	showing	nascent	RNA	differences	(fold	enrichment)	between	3	
and	6 days	of	ICM	treatment.	Significantly	up-	/downregulated	genes	are	shown	(>|0.6| log2-	fold	change).	N	is	the	number	of	the	genes	in	
each	group.	(g)	Venn	diagrams	of	up-	/down-	regulated	genes	from	ICM	mRNA-	Seq	and	3-		or	6-	day	ICM	nascent	RNA-	Seq.	(h)	GO	term/
pathway	analysis	of	all	commonly	downregulated	genes	from	panel	g.	(i)	Comparison	of	differentially	expressed	genes	between	replicative	
senescence	and	3	or	6 days	of	ICM	treatment	(left	and	middle	panel,	R2 = 0.28	and	0.36,	respectively)	and	oncogene	induced	senescence	and	
ICM	(right	panel,	R2 = −0.1).	N	is	the	number	of	genes	in	each	comparison.	(j)	Plot	showing	changes	(log2FC ± SD)	in	mean	RNAPII	elongation	
rates	calculated	using	nascent	RNA-	Seq	data.
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TFs	predicted	 to	control	 the	3-		 and	6-	day	 ICM-	regulated	genes	
were	 also	 similar,	 with	 p53	 and	 E2F-	family	 factors	 being	 most	
enriched	 (Figures S3D and S4C).	However,	 there	was	 a	 relative	
de-	enrichment	for	NF-	κB-	regulated	downregulated	genes	at	both	
time	points,	indicating	that	their	suppression	upon	ICM	treatment	
might	not	be	exclusively	transcriptional.	Indeed,	by	looking	at	the	
overlap	 between	 differentially	 expressed	 mRNAs	 and	 nascent	
RNAs,	only	about	28%	of	up-		or	of	downregulated	nascent	tran-
scripts	were	also	regulated	at	the	messenger	 level,	while	>1000 
up-		and	>700	downregulated	mRNAs	did	not	qualify	as	differen-
tially	expressed	 in	 factory	RNA-	Seq	data	 (Figure 3g).	Some	part	
of	 this	 can	 be	 attributed	 to	 a	 difference	 in	 approach	 and	 anal-
ysis	 (exon-		 vs.	 intron-	level	 quantification),	 but	 likely	 also	points	
to	 posttranscriptional	 regulation	 (e.g.,	 changes	 in	mRNA	 stabil-
ity).	 Still,	 the	 152	 commonly	 downregulated	 genes	 in	 the	 three	
datasets	 associated	with	 the	 expected	GO	 terms	 and	pathways	
(Figure 3h).

Next,	 we	 used	 publicly-	available	 RNA-	Seq	 data	 from	 rep-
licative	 (Rai	 et	 al.,	 2014)	 and	 oncogene-	induced	 senescence	 in	
IMR90	 (Hernandez-	Segura	 et	 al.,	 2017),	 as	 well	 as	 a	 signature	
deduced	 from	different	 types	of	 senescence	 (Hernandez-	Segura	
et	 al.,	 2017)	 for	 a	 comparison	 to	 data	 from	 3-		 and	 6-	day	 ICM-	
treated	cells.	We	found	a	robust	positive	correlation	with	RS	dif-
ferentially	expressed	genes	 (R2 = 0.28	and	0.36	 for	3	and	6 days,	
respectively; Figure 3i)	and	with	the	consensus	signature	(R2 = 0.84;	
Figure S5A),	but	no	correlation	with	OIS	(R2 = −0.1;	Figure 3i).	This	
agrees	with	our	phenotypic	characterization	showing	resemblance	
of	 ICM-	induced	senescence	and	RS,	with	a	key	discrepancy	con-
cerning	inflammatory	gene	activation.	We	therefore	compared	RS	
with	ICM	mRNA-	Seq	(wherein	pro-	inflammatory	gene	suppression	
was most apparent; Figure S2A)	 to	 address	 this.	 The	 175	 genes	
strongly	 upregulated	 in	 RS,	 but	 suppressed	 by	 ICM	 treatment,	
were	strongly	associated	with	the	pro-	inflammatory	response	and	
the	SASP	(Figure S5A,B).

Moreover,	 we	 wanted	 to	 address	 the	 extent	 to	 which	
ICM	 treatment	 produced	 effects	 that	 can	 be	 attributed	 to	
HMGB1/-	B2	depletion.	We	 therefore	 analyzed	HMGB1	 (Sofiadis	
et	al.,	2021)	and	new	HMGB2	 siRNA-	mediated	knockdown	RNA-	
Seq	 data	 (Figure S5C,D).	 We	 found	 ICM-	induced	 gene	 expres-
sion	changes	correlating	strongly	 (R2 = 0.46)	with	those	recorded	
upon HMGB2-	KD	 (Figure S5C),	 and	 moderately	 anticorrelating	
(R2 = −0.27)	with	those	induced	by	HMGB1-	KD	(Figure S5D).	Gene	
set	 enrichment	 analysis	 (GSEA)	 of	 the	 positively	 and	 negatively	
correlated	genes	in	each	comparison	confirmed	previous	analyses.	
Namely	that	HMGB2-	KD	suppressed	pro-	inflammatory	responses	
and	induced	mitotic	arrest	(Figure S5E)	as	would	be	expected	from	
ICM.	On	 the	other	hand,	HMGB1-	KD	 induced	 inflammatory	 cas-
cades	 in	 contrast	 to	 ICM,	with	which	 it	 positively	 correlated	 as	
regards	 a	 pronounced	 cell	 cycle	 arrest	 (Figure S5F).	 Therefore,	
ICM	treatment	appears	to	promote	replicative	arrest	via	the	same	
gene	 expression	 changes	 caused	 by	HMGB1/-	B2-	KD,	 while	 also	
suppressing	 pro-	inflammatory	 gene	 induction	 caused	mostly	 via	
the	loss	of	HMGB1.

Finally,	we	examined	two	more	features	of	cellular	ageing,	the	in-
crease	in	RNAPII	velocity	in	senescent	cells	(Debès	et	al.,	2023)	and	
the	changes	in	methylation	levels	at	six	senescence-	predictive	CpGs	
(Franzen	et	al.,	2017).	The	former	showed	the	expected	acceleration	
of	RNAPII	(Figure 3j),	while	the	latter	showed	no	predictive	power	
during	a	12-	day	ICM	treatment	in	contrast	to	how	it	performs	for	RS	
(Figure S5G).

2.4  |  Comparison of replicative and ICM- induced 
senescence at the single cell level

One	 key	 motivation	 behind	 the	 pursuit	 of	 this	 system	 of	 ICM-	
triggered	senescence	was	the	need	for	a	more	synchronous	and	ho-
mogeneous	induction	of	senescence	in	a	given	cell	population,	as	the	
entry	into	RS	is	largely	stochastic	and	heterogeneous	at	the	level	of	
individual	cells	(Zirkel	et	al.,	2018;	for	RS	in	HUVECs).	This	is	not	only	
due	to	idiosyncratic	cell-	intrinsic	properties	(e.g.,	telomere	attrition),	
but	also	a	result	of	complex	paracrine	signaling	via	the	SASP	(Coppé	
et	al.,	2010).	Thus,	we	reasoned	that	the	apparently	SASPless	ICM	
phenotype	 would	 produce	 homogeneously-	senescent	 populations	
within	6 days	of	treatment.

To	 test	 this,	 we	 generated	 single-	cell	 transcriptomic	 data	 from	
proliferating	 (DMSO-	treated),	 replicative	 senescent,	 and	 6-	day	
ICM-	treated	 IMR90	from	the	same	 isolate.	We	 interrogated	a	 total	
of	 ~26,000	 cells	 (8443	 proliferating,	 7947	 senescent,	 and	 9354	
ICM-	treated)	using	3′	end	single-	cell	RNA-	Seq.	Following	analysis	of	
>1.8 billion	 reads	 (mean	 coverage	 was	>70,000	 reads/cell,	 median	
number	of	genes	detected	was	5697	genes/cell),	single-	cell	transcrip-
tomes	that	met	standard	quality	controls	(Figure 4a,b)	were	used	for	
in	unsupervised	clustering.	This	produced	five	clusters,	as	reflected	
in	t-	SNE	embedding,	of	which	one	(Cluster	1)	was	almost	exclusively	
populated	 by	 proliferating	 and	 one	 (Cluster	 3)	 exclusively	 by	 ICM-	
treated	 cells	 (Figure 4c).	 In	 accordance	 to	RS	heterogeneity	 (Zirkel	
et	al.,	2018),	some	proliferating	cells	clustered	among	senescent	cells	
(mostly	in	cluster	0)	and	some	senescent	cells	mixed	with	proliferating	
ones	(in	cluster	1).	However,	ICM-	treated	cells	only	mixed	with	senes-
cent	ones	(in	clusters	0,	2,	and	4)	and	showed	overall	less	dispersion	
in	t-	SNE	plots	(Figure 4c).	This	was	also	reflected	in	the	distribution	of	
known	senescence	markers.	For	example,	HMGB2 and DNMT1 were 
expressed	in	proliferating	cells	of	Cluster	1	only	and	essentially	not	at	
all	in	senescent	and	ICM-	treated	cells	alike,	while	CDKN1A	expression	
was	confined	to	senescent	and	ICM-	treated	cells,	the	latter	showing	
significantly	higher	activation	(Figure 4d,e).	Largely	uniform	and	low	
CTCF	 expression	 levels	 (as	most	 transcription	 factors	 are	 lowly	ex-
pressed)	provided	a	control	(Figure 4d,e).

Next,	 we	 identified	 condition-	specific	 differentially	 expressed	
genes.	Using	a	 threshold	of	 log2FC > |0.25|	 and	comparing	all	 pro-
liferating	with	 either	 senescent	 or	 ICM-	treated	 cells,	we	detected	
>150	differentially	expressed	genes	per	 condition.	Of	 these,	 two-	
third	(i.e.,	105	genes;	more	than	expected	by	chance,	p < 0.01)	were	
shared	between	senescent	and	ICM-	treated	cells	highlighting	their	
convergence	(Figure 4f)	and	associated	with	GO	terms	central	to	the	
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senescent	phenotype,	like	cell	cycle	regulation,	chromosome	organi-
zation,	or	DNA	metabolism	(Figure 4g).	Notably,	almost	all	of	the	105	
genes	were	 included	 in	 the	267	commonly	differentially	 regulated	
genes	seen	by	bulk	RNA-	Seq	measurements	(Figure 3h).

Lastly,	we	asked	how	SASP	regulation	manifested	in	this	data.	
Looking	among	differentially	expressed	genes	for	markers	identi-
fied	 in	 the	SASP	atlas	 (http:// www. saspa tlas. com),	 like	SERPINE1 
and	 PTX3,	 or	 genes	 indirectly	 controlling	 SASP	 production	 like	

F I G U R E  4 Single-	cell	analysis	of	ICM-	induced	transcriptomes.	(a)	Scatter	plot	of	the	number	of	unique	molecular	identifiers	(UMIs)	versus	
the	number	of	detected	genes	in	each	cell	analyzed.	Cells	that	passed	(red)	or	not	(black)	this	quality	filter	and	the	calculated	Spearman's	
correlation	coefficient	(R2)	are	indicated.	(b)	As	in	panel	a,	but	for	the	number	of	UMIs	versus	the	percent	of	mitochondrial	genes	detected	
in	each	cell.	(c)	Left:	t-	SNE	embedding	of	gene	expression	profiles	from	25,744	cells	clustered	in	an	unsupervised	manner.	Right:	Projection	
of	proliferating	(DMSO),	senescent	(RS),	and	6-	day	ICM-	treated	cells	(+ICM)	onto	the	t-	SNE	map.	(d)	Projection	of	selected	marker	gene	
expression	levels	onto	the	t-	SNE	map	of	panel	c.	(e)	Violin	plots	showing	expression	level	distribution	of	the	marker	genes	from	panel	d	in	
proliferating	(prolif),	senescent	(RS),	and	6-	day	ICM-	treated	cells	(+ICM).	*p < 0.01,	Wilcoxon-	Mann–Whitney	test.	(f)	Venn	diagram	showing	
the	overlap	of	differentially	expressed	genes	from	senescent	and	ICM-	treated	cells.	(g)	GO	term/pathway	analysis	of	the	105	shared	
differentially	expressed	genes	from	panel	f.	(h)	As	in	panel	e,	but	for	exemplary	SASP-	related	genes.	*p < 0.01,	Wilcoxon–Mann–Whitney	
test.	(i)	Heatmap	showing	transcription	factors	predicted	to	regulate	genes	from	panel	f	based	on	motif	enrichment.
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HMGA2	(Boumendil	et	al.,	2019),	we	found	that	they	were	signifi-
cantly	upregulated	across	 senescent	 cells,	but	 reduced	 to	below	
control	 levels	 in	 ICM-	treated	 IMR90	 (Figure 4h).	 This	 was	 also	
reflected	 in	the	de-	enrichment	for	genes	regulated	by	RELA	and	
NFKB1	in	the	105	differentially	expressed	genes	shared	by	ICM-	
treated	and	 senescent	 cells	 (Figure 4i)	 and	agreed	with	our	bulk	
RNA-	Seq	 (Figure S5A,B)	 and	TTRUST	 analysis	 (Figure 3d).	 Thus,	
our	single-	cell	data	also	confirmed	the	senescence-	like	features	of	
ICM-	induced	cell	growth	arrest,	as	well	as	the	more	homogeneous	
nature	of	the	response	in	IMR90	compared	to	senescence	entry	by	
continuous passaging.

2.5  |  ICM- induced changes to the proteome are 
transcriptionally driven

Despite	strong	indications	from	our	gene	expression	analyses	about	
the	 similarities	 between	 replicative	 and	 ICM-	induced	 senescence,	
it remained unclear whether the proteome also responded in the 
manner	 expected	 of	 senescent	 cells.	 To	 address	 this,	 we	 gener-
ated	 Ribo-	Seq	 and	 whole-	cell	 mass-	spec	 data	 from	 proliferating	
and	 ICM-	treated	 IMR90	 in	 biological	 triplicates,	 and	 compared	
them	to	equivalent	data	generated	previously	for	RS	entry	(Sofiadis	
et	al.,	2021).	Whole-	cell	proteome	analysis	after	6 days	of	ICM	treat-
ment	revealed	565	significantly	up-		and	626	downregulated	proteins	
(p < 0.05,	log2LFQ > |0.6|;	Figure 5a).	GO	term	analysis	of	these	dif-
ferentially	expressed	proteins	identified	senescence	hallmark	path-
ways	linked	to	both	up-		(e.g.,	stress	response	and	p53	pathway)	and	
downregulated	ones	(e.g.,	cell	cycle,	chromosome	organization,	and	
RNA	metabolism)	(Figure 5b and Figure S6A,B).	This	 is	 in	 line	with	
the	 differential	 analysis	 of	 RNA-	Seq	 data,	 with	 a	 TTRUST	 query	
predicting	that	 the	genes	coding	for	downregulated	proteins	were	
controlled	by	p53,	MYC,	and	E2F-	family	TFs	(Figure S6C),	and	with	
changes	in	the	proteome	of	isolated	IMR90	nuclei	upon	ICM	treat-
ment	(Figure S7A–C).

We	 next	 focused	 on	 the	 regulation	 of	 translation	 upon	 ICM	
treatment.	We	previously	used	Ribo-	Seq	to	show	that	almost	none	
of	the	changes	in	senescence-	related	gene	expression	could	be	ex-
plained	by	changes	in	translation	levels	only	(Sofiadis	et	al.,	2021),	
and	 that	 no	 ribosome	 stalling,	 competition	 by	 upstream	 ORFs	
or	 translational	 deficiency	 could	 be	 detected	 (Papaspyropoulos	
et	 al.,	 2023).	 Thus,	 we	 generated	 Ribo-	Seq	 data	 for	 6-	day	

ICM-	treated	IMR90	and	correlated	them	to	matching	mRNA-	Seq	
and	whole-	cell	proteome	datasets.	Much	 like	what	we	observed	
for	RS,	all	significant	changes	in	translation	were	explained	by	an	
analogous	change	in	transcript	availability	(Figure 5c).	These	tran-
scripts	were	linked	to	key	processes	for	senescence	commitment	
like	the	downregulation	of	RNA	metabolism,	cell	cycle	regulation,	
and	telomere	organization	(Figure 5d).	There	also	were	300	tran-
scripts	“buffered”	by	translation	(i.e.,	transcriptionally	suppressed,	
but	 translationally	 boosted	 or	 vice	 versa),	which	 could	 be	 impli-
cated	 in	 pathways	 like	 RNA	 modification	 or	 Notch	 and	 VEGFA	
signaling	 (Figure 5c,d).	 These	 correlations	 remained	 largely	 un-
changed	when	ICM	mRNA-	Seq	or	Ribo-	Seq	data	were	replaced	by	
those	generated	in	RS	IMR90	(Figure 5e).	Thus,	the	ICM-	induced	
expression	 program	 is	 predominantly	 regulated	 at	 the	 level	 of	
transcription,	just	like	the	one	of	RS	(Sofiadis	et	al.,	2021).

Interestingly,	and	in	line	with	our	mRNA-	Seq	analysis,	the	ex-
pression	of	proteins	involved	in	cytokine	stimulation	and	the	inter-
feron	response	was	suppressed	by	ICM	treatment	(Figure 5a and 
Figure S6A),	and	these	transcripts	were	mostly	found	“buffered”	
when	 Ribo-	Seq	was	 co-	considered	 (Figure 5d).	 Dot	 bot	 analysis	
of	intracellular	and	extracellular	levels	of	HMGB1	and	B2	showed	
that,	 in	 contrast	 to	what	was	observed	during	prolonged	 IMR90	
passaging,	 HMGB1	 is	 not	 released	 into	 the	 growth	 media	 as	 a	
pro-	inflammatory	 “alarmin”	 (Davalos	 et	 al.,	2013)	 despite	 its	 ap-
parent	 intracellular	 reduction	 (Figure 5f).	 ICM	 also	 constrained	
the	TNFα-	induced	secretome	of	IMR90	(Figure S6D).	We	assessed	
this	more	broadly	by	using	a	public	catalogue	of	fibroblast	SASP	
(http:// www. saspa tlas. com)	and	overlapping	 it	with	 ICM-	induced	
proteome	changes.	Of	~600	bona	fide	SASP	factors,	<15%	over-
lapped	 our	 data,	 with	 52	 being	 significantly	 down-		 and	 only	 34	
significantly	upregulated	(Figure 5g).	However,	even	those	upreg-
ulated	 by	 ICM,	were	 not	 induced	 to	 the	 full	 extent	 observed	 in	
senescent	fibroblasts	(Figure 5g).	Taken	together,	the	above	anal-
yses	confirm	that	ICM	triggers	a	mostly	SASP	less	senescence-	like	
phenotype.

2.6  |  ICM triggers 3D genome reorganization 
reminiscent of RS

RS	 has	 been	 linked	 to	 extensive	 reorganization	 of	 3D	 chroma-
tin	 folding	 (Mizi	 et	 al.,	2020),	 with	 entry	 into	 senescence	 already	

F I G U R E  5 Proteomic	changes	induced	by	ICM	treatment	of	IMR90.	(a)	Volcano	plot	showing	whole	proteome	up-		(orange,	>0.6 log2LFQ)	
and	downregulated	proteins	(turquoise,	<−0.6	log2LFQ)	upon	6 days	of	ICM	treatment.	The	number	of	proteins	(N)	in	each	set	is	indicated.	
(b)	GO	term/pathways	analysis	of	all	downregulated	proteins	from	panel	a.	(c)	Left:	Scatter	plots	showing	correlation	between	mRNA-	Seq	
(transcription)	and	Ribo-	Seq	levels	(translation)	of	transcripts	differentially	expressed	upon	6-	day	ICM	treatment.	Right:	Correlation	between	
mRNA-	Seq	and	whole	proteome	levels	for	the	same	set	of	genes.	The	number	of	genes/proteins	(N)	in	each	set	and	Pearson's	correlation	
coefficient	(ρ)	are	indicated.	(d)	Heatmap	showing	GO	terms/pathways	associated	with	transcripts	in	the	different	quadrants	of	panel	c	
(color-	coded	the	same	way).	The	number	of	transcripts	in	each	subgroup	(N)	is	indicated.	(e)	As	in	panel	c,	but	using	differentially	expressed	
genes	from	replicative	senescence.	(f)	Dot	blot	showing	intracellular	HMGB1	and	HMGB2	and	secreted	HMGB1	levels	across	passages	(left	
panel)	and	days	of	ICM	treatment.	Histone	H4	levels	provide	a	control.	(g)	Left:	Venn	diagram	showing	up-		and	downregulated	proteins	
from	whole-	cell	proteomics	crossed	with	all	known	fibroblast	SASP	factors.	Right:	Box	plot	showing	changes	in	SASP-	related	protein	levels	
(log2LFQ).	*p < 0.01,	unpaired	two-	tailed	Student's	t test.
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characterized	by	 changes	 at	 the	 level	 of	 compartments	 and	TADs	
(Sati	 et	 al.,	2020;	 Zirkel	 et	 al.,	2018).	 Therefore,	 as	 a	 last	 element	
in	 the	 characterization	of	 ICM-	induced	 senescence,	we	addressed	
the	extent	of	3D	genome	reorganization	after	6 days	of	treatment.	
We	generated	high-	resolution	Micro-	C	data	(Hsieh	et	al.,	2020)	from	
proliferating	 (DMSO-	treated)	 and	 ICM-	treated	 IMR90.	 Replicates	
form	each	condition	were	sequenced	to	>1.1 billion	read	pairs	gen-
erating maps with >614 and >711 million	contact	pairs	for	proliferat-
ing	and	ICM-	treated	cells,	respectively.	Of	these,	>50%	represented	
long-	range	contacts	(separated	by	>10 kbp;	see	Table S1	for	details).	
As	a	result,	we	obtained	dense	5-	kbp	resolution	contact	maps	with	
differences	between	conditions	(Figure 6a).

In	more	detail,	interaction	decay	plots	showed	reduced	contact	
frequency	 at	 the	Mbp	 scale,	 in	 parallel	 with	 increased	 frequency	
at	 sub-	Mbp	 separation	 distances	 (Figure 6b).	 The	 former	 is	 rem-
iniscent	of	 the	 “better	 compartment	definition”	we	previously	ob-
served	 in	 lower	 resolution	 Hi-	C	 data	 from	 senescent	 IMR90	 and	
HUVECs	(Zirkel	et	al.,	2018),	and	was	corroborated	by	reduced	inter-	
compartmental	interactions	in	ICM-	treated	cells	(Figure 6c).	This	can	
be	explained	in	part	by	the	ICM-	induced	transcriptional	suppression	
(Figure 3a)	 leading	 to	 chromatin	 compaction	 at	 the	 sub-	TAD	 level	
(Criscione,	De	Cecco,	et	al.,	2016).

We	 also	 generated	 CUT&Tag	 data	 for	 the	 two	 key	 architec-
tural	 factors	 giving	 rise	 to	 chromatin	 loops	 (Figure 6a),	 the	 insu-
lator	 protein	 CTCF	 and	 the	 ring-	shaped	 cohesin	 complex	 via	 its	
SMC1A	 subunit	 (Hansen	et	 al.,	 2017).	Analysis	 of	CTCF	CUT&Tag	
returned	4652	CTCF	peaks	in	proliferating,	8440	in	senescent,	and	
6666	in	ICM-	treated	IMR90	(using	the	top	1%	of	peaks	and	filtering	
for	the	presence	of	a	consensus	CTCF	motif	under	each	peak;	see	
Section	4)	 (Figure 6d,e).	 For	SMC1A,	14,884	peaks	were	 called	 in	
proliferating	cells,	12,928	 in	senescent,	and	17,810	 in	 ICM-	treated	
ones	(Figure 6d,f).	Overall,	ICM	CTCF	peaks	overlapped	more	peaks	
from	senescent	 rather	 than	proliferating	 IMR90,	but	 the	converse	
was	true	for	SMC1A	(Figure 6e,f).	Nevertheless,	 inspection	of	sig-
nal	distribution	in	genome	browser	tracks	and	in	heatmaps	showed	
that	 there	were	 indeed	numerous	strong	CTCF	peaks	emerging	 in	
both	 ICM-	induced	 and	 replicative	 senescence,	 while	 for	 SMC1A	
this	mostly	 held	 true	 in	 ICM-	treated	 cells	 (Figure 6d–f).	However,	

SMC1A	signal	at	shared	CTCF	peaks	was	reduced	by	at	least	36%	in	
ICM-	induced	as	well	as	in	RS	cells	(Figure 6g).

The	 emergence	 of	 condition-	specific	 CTCF-		 and	 cohesin-	
occupied	 positions	 along	 IMR90	 chromosomes	 in	 combination	
with reduced cohesin levels led to a decrease in overall contact in-
sulation	around	CTCF	peaks	(Figure 6h).	This	effect	should	trans-
late	 into	 formation	 of	 condition-	specific	 loops	 from	 the	 22,871	
and	14,995	called	in	proliferating	and	ICM-	treated	IMR90,	respec-
tively.	After	stratifying	loops	as	CTCF-		or	nonCTCF-	anchored,	we	
indeed	 found	613	CTCF	 (out	of	1801;	34%)	 and	4303	nonCTCF	
loops	(out	of	13,194;	33%)	that	were	unique	to	ICM-	treated	cells	
and	showed	increased	contact	frequency	(Figure 6i,j).	Notably,	and	
despite	the	fewer	loops	called	in	ICM	data,	loop	length	was	signifi-
cantly	 increased	 following	 ICM	treatment	 (Figure 6k).	This	again	
agreed	with	 previous	 observations	 from	Hi-	C	 and	CTCF	HiChIP	
data	in	RS	(Zirkel	et	al.,	2018),	and	may	be	linked	to	the	formation	
of	senescence-	induced	CTCF	clusters	(SICCs).	Last,	we	exploited	
the	 fact	 that	Micro-	C	 signal	 contains	 information	 about	 nucleo-
some	 positioning	 (Hsieh	 et	 al.,	 2020)	 to	 examine	 their	 density	
genome-	wide.	We	plotted	1-	D	Micro-	C	signal	around	CTCF	peaks	
and	found	that,	despite	an	overall	signal	decrease	in	ICM-	induced	
cells,	 nucleosomes	were	 positioned	 in	 better	 defined	 arrays	 fol-
lowing	 ICM	treatment	 (Figure 6l).	Nucleosome	signal	decrease	 is	
characteristic	of	senescence	(Debès	et	al.,	2023),	while	the	more	
defined	positioning	 is	 reminiscent	of	 that	 seen	after	RNAPII	de-
pletion	 from	human	cells	 (Zhang	et	 al.,	2023).	 Thus,	3D	genome	
reorganization	in	ICM-	induced	senescence	also	aligns	well	with	RS	
entry.

3  |  DISCUSSION

Senescence	 is	 essentially	 hard-	wired	 in	 the	 homeostatic	 pro-
gram	 of	 proliferating	 cells	 grown	 in	 vivo	 and	 in	 vitro	 (Hayflick	 &	
Moorhead,	 1961).	 However,	 its	 emergence	 in	 cell	 populations	 is	
nonhomogeneous	and	heavily	influenced	by	various	waves	of	parac-
rine	signaling	(Kirschner	et	al.,	2020;	Martin	et	al.,	2023).	This	poses	
several	 issues	when	 studying	 cell	 commitment	 to	 senescence.	For	

F I G U R E  6 3D	genome	reorganization	at	6 days	post-	ICM	treatment.	(a)	Heatmap	showing	Micro-	C	contacts	at	10-	kbp	in	an	exemplary	4-	
Mbp	segments	from	chr1.	Differences	in	loop	formation	between	proliferating	(DMSO)	and	ICM-	treated	IMR90	(+ICM)	are	denoted	(circles).	
(b)	Plots	showing	decay	of	contact	frequency	as	a	function	of	genomic	distance	(top)	and	its	first	derivative	(bottom)	for	proliferating	and	
ICM-	treated	cells.	(c)	Saddle	plots	showing	contact	distribution	among	and	between	inactive	(top	left	corner)	and	active	compartments	
(bottom	right	corner)	in	proliferating	(DMSO)	and	ICM-	treated	Micro-	C	data	(+ICM).	(d)	Representative	genome	browser	views	of	CTCF	
and	SMC1A	CUT&Tag	signal	along	a	100-	kbp	region	of	chr17	from	proliferating	(grey),	ICM-	treated	(green)	or	senescent	IMR90	(purple).	(e)	
Left:	Venn	diagram	showing	the	overlap	of	CTCF	peaks	(top	1%)	in	CUT&Tag	data	from	proliferating,	ICM-	treated,	and	senescent	IMR90.	
Right:	Heatmaps	showing	scaled	CUT&Tag	signal	in	the	4 kbp	around	the	peaks.	(f)	As	in	panel	e,	but	for	SMC1A	CUT&Tag	data.	(g)	Line	plots	
showing	mean	CTCF	or	SMC1A	CUT&Tag	signal	coverage	in	the	4 kbp	around	all	shared	peaks	from	proliferating	(grey),	ICM-	treated	(green)	
or	senescent	IMR90	(purple).	(h)	Insulation	plot	averaging	Micro-	C	contacts	in	the	600 kbp	around	CTCF	peaks	from	proliferating	(DMSO)	
and	ICM-	treated	IMR90	(+ICM).	(i)	Aggregate	plots	showing	average	Micro-	C	signal	in	the	100 kbp	around	CTCF	loop	summits	called	at	
5-	kbp	resolution	from	unique	to	or	shared	by	proliferating	and	ICM-	treated	IMR90.	(j)	As	in	panel	i,	but	for	nonCTCF-	anchored	loops.	(k)	
Box	plots	showing	the	distribution	of	CTCF	loop	lengths	in	proliferating	(DMSO)	and	ICM-	treated	IMR90	(+ICM).	*p < 0.01,	Wilcoxon–
Mann–Whitney	test.	(l)	Heatmaps	showing	nucleosome	distribution	signal	derived	from	Micro-	C	data	in	the	2 kbp	around	CTCF	motifs	under	
CUT&Tag	peaks	from	proliferating	(DMSO)	or	ICM-	treated	IMR90	(+ICM).

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.14083 by M

ax-Planck-Institut fur M
ultidisziplinare N

aturw
issenschaften, W

iley O
nline L

ibrary on [06/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  13 of 22PALIKYRAS et al.

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.14083 by M

ax-Planck-Institut fur M
ultidisziplinare N

aturw
issenschaften, W

iley O
nline L

ibrary on [06/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 22  |     PALIKYRAS et al.

example,	 the	 core	 transcriptional	 program	 responsible	 for	 senes-
cence	entry	might	be	obscured	by	differential	 gene	 induction	and	
silencing	due	to	SASP	and	secondary	Notch	signaling	in	a	cell	popu-
lation.	 Similarly,	 studying	 the	 temporal	 order	 of	 molecular	 events	
leading up to senescence commitment can be obscured by the non-
synchronous manner by which it occurs in individual cells.

Here,	we	present	a	phenotypic	and	multi-	omics	characterization	
of	senescence	induced	in	the	popular	IMR90	cellular	model	following	
treatment	with	the	small	molecule	inhibitor	ICM.	We	showed	that,	
within	6 days	of	treatment	with	10 μM	ICM,	a	senescence-	like	state	
is stably and irreversibly instated in the cell population in a synchro-
nous	and	 largely	homogeneous	manner.	Most	notably,	senescence	
emerges	in	the	absence	of	apparent	paracrine	signaling	by	the	SASP	
that	turns	on	pro-	inflammatory	genes	(Coppé	et	al.,	2010).	However,	
at	 first	 glance	 this	 seems	 to	 contrast	 the	 original	 characterization	
of	 the	 ICM	mode-	of-	action	 (Lee	et	al.,	2014).	 ICM	was	 indeed	de-
veloped	and	selected	for	its	robust	anti-	inflammatory	capacity.	This	
stemmed	from	its	presumed	ability	to	constrain	the	release	of	HMGB	
proteins,	 especially	 HMGB1,	 from	 the	 cell	 nucleus	 by	 interfering	
with	their	posttranslational	modification	(Lee	et	al.,	2014).	HMGB1	
has	a	pronounced	role	as	an	“alarmin”	released	from	cells	to	trigger	
inflammation	 in	 its	niche	 in	vitro	and	 in	vivo	 (Davalos	et	al.,	2013; 
Papantonis,	2021;	Salminen	et	al.,	2012;	Vénéreau	et	al.,	2015).	ICM	
treatment	constrained	neuroinflammation	in	cell	cultures	and	animal	
models	(Lee	et	al.,	2014)	and	HMGB1-	related	secretion	and	signaling	
from	pancreatic	cells	(Chung	et	al.,	2019)	much	like	it	constrains	the	
SASP	 in	 IMR90	 in	 our	 hands.	However,	 the	 compound	was	 never	
tested	 for	 treatment	 periods	 longer	 than	 24 h,	 which	 would	 have	
allowed	 its	 full	 effects	 to	 deploy—namely,	 the	 synchronous	 and	
near-	complete	depletion	of	both	HMGB1	and	B2	 from	nuclei,	 but	
without	their	apparent	rerouting	to	the	secretory	pathway.	Thereby,	
ICM	does	permanently	restrict	HMGBs	in	the	nucleus,	but	can	block	
secretion	in	favor	of	degradation,	likely	via	the	crosstalk	of	HMGB1	
with	 the	 autophagy	pathway	 (Kim	et	 al.,	2018).	 It	would,	 thus,	 be	
interesting	to	eventually	examine	multi-	tissue	effects	following	sys-
tematic	in	vivo	ICM	administration	in	animal	models	in	more	detail,	
while	factoring	in	our	observations	from	IMR90.

Having	said	 this,	 ICM	does	produce	some	phenotypic	and	mo-
lecular	 effects	 that	do	not	 fully	 align	with	 those	of	 replicative	 se-
nescence.	 Our	 single-	cell	 imaging	 and	 RNA-	Seq	 data	 support	 the	
resemblance	of	ICM-	treated	IMR90	with	those	reaching	senescence	
by	passaging,	but	ICM	treatment	does	not,	for	instance,	give	rise	to	
a	typical	spindle-	like	cell	morphology	of	senescent	cells,	lead	to	the	
accumulation	of	DNA	damage	or	 to	a	senescence-	specific	methyl-
ation	signature.	Such	discrepancies	discriminate	ICM-	induced	from	
replicative	senescence,	although	this	is	the	type	of	cell	ageing	phe-
notype	that	ICM-	treated	cells	resemble	the	most.

In	summary,	we	wished	to	share	ICM-	induced	senescence	with	
the	broader	community	as	a	new	tool	for	accelerating	research	into	
the	cell-	intrinsic	core	of	the	senescent	transcriptional	program	and	
the	 different	 components	 that	 mediate	 its	 irreversible	 nature	 (or	
allow	for	its	sporadic	bypass).	Such	rapid	and	synchronous	pharma-
cological	 induction	 of	 senescence,	 devoid	 of	 paracrine	 influence,	

might	even	serve	as	a	controllable	in	vitro	system	for	testing	antiag-
ing	(Browder	et	al.,	2022;	Roux	et	al.,	2022)	or	senolytic	approaches	
(Chaib	et	al.,	2022;	Robbins	et	al.,	2020),	and	we	provide	a	compre-
hensive	characterization	of	it.

4  |  METHODS

4.1  |  Cell culture and senescent assays

Single	IMR90	isolates	(I90-	83,	passage	5;	Coriell	Biorepository)	were	
continuously	passaged	at	37°C	under	5%	CO2	 in	Minimal	Essential	
Medium	 l-	Glutamine	 without	 HEPES	 (MEM	 1×)	 (Gibco™	 Life	
Technologies	GmbH,	31095052)	supplemented	with	10	%	FBS	(Life	
Technologies,	10500064),	1×	(1%)	MEM	Non-	essential	Amino	Acid	
Solution	 without	 l-	glutamine	 (Sigma-	Aldrich,	 M7145-	100ML)	 and	
1%	Penicillin/Streptomycin	 (Gibco™	Life	 Technologies,	 15140122).	
The	 senescent	 state	 of	 the	 cells	 was	 addressed	 by	 senescence-	
associated β-	galactosidase	 assay	 (Cell	 Signaling)	 according	 to	 the	
manufacturer's	 instructions.	Cells	were	driven	 into	 senescence	ei-
ther	 by	 continuously	 passaging	 them	 to	 replicative	 exhaustion	 or	
by	 using	 ICM	 (concentration	 and	 period	 of	 treatment	 is	 depicted	
on	 individual	 experiments).	Cell	 proliferation	was	monitored	using	
the	Sartorius	IncuCyte	S3	Live-	Cell	Analysis	System	and	acquiring	a	
picture	every	8 h	for	a	total	of	11 days.	Finally,	DNA	methylation	at	
six	 selected	CpG	 islands	was	measured	by	 isolating	genomic	DNA	
at	the	different	cell	states	and	performing	targeted	pyrosequencing	
(Cygenia	GmbH)	as	previously	detailed	(Franzen	et	al.,	2017).

4.2  |  Immunofluorescence and image analysis

Cells	treated	with	ICM-	C6-	610CP	were	cultured	on	coverslips	for	
3 days	 and	 DNA	 was	 subsequently	 stained	 with	 5-	SiR-	Hoechst	
(Bucevičius	 et	 al.,	2020)	 and	 fixed	 via	 incubation	with	 4%	 para-
formaldehyde	 (PFA)	 in	 Dulbecco's	 Phosphate-	Buffered	 Saline	
(DPBS).	For	every	other	staining,	cells	grown	on	coverslips	were	
fixed	via	incubation	with	4%	PFA	in	DPBS	at	RT	for	10 min	and	then	
permeabilized	with	0.5%	Triton-	X	in	PBS	for	10 min.	Blocking	was	
performed	with	1%	Bovine	Serum	Albumin	(BSA)	in	PBS	at	RT	for	
1 h.	Cells	were	then	incubated	with	the	primary	antibody	(diluted	
in	0.5%	BSA/PBS)	 at	RT	 for	1 h	 at	 the	 indicated	dilution:	mouse	
monoclonal	 anti-	HMGB1	 (1:1000;	 Abcam	 ab190377-	1F3);	 rabbit	
polyclonal	 anti-	HMGB2	 (1:1000;	 Abcam	 ab67282);	 rabbit	 poly-
clonal	 anti-	CTCF	 (1:500;	 Active	 motif	 61311);	 rabbit	 polyclonal	
anti-	H3K27me3	 (1:1000;	 Diagenode	 C15410069);	 rabbit	 poly-
clonal	 anti-	p21	 (1:500;	Abcam	EPR362—ab109520).	 The	primary	
antibody	 was	 washed	 with	 PBS	 twice	 for	 5 min	 per	 wash.	 Cells	
were	incubated	with	the	secondary	antibody	(diluted	in	0.5%	BSA/
PBS)	at	RT,	in	the	dark	for	1 h	at	the	indicated	dilution:	anti-	rabbit	
Alexa488	 (1:1000,	 Abcam	 ab150077);	 anti-	mouse	 Cy3	 (1:1000,	
Abcam	ab97035).	Cells	were	then	washed	with	PBS	twice	for	5 min	
per	wash.	ProLongTM	Gold	antifade	reagent	with	DAPI	(#P36931)	
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was	 added	 to	 the	 cells.	 For	 visualizing	 nascent	 transcripts,	 cells	
were	pre-	incubated	with	2.5 mM	5-	ethynyl	uridine	(EU)	for	40 min	
at	 37°C	 in	 their	 growth	 medium,	 fixed	 and	 processed	 with	 the	
Click-	iT	EdU	chemistry	kit	(Thermo	Fisher).	For	image	acquisition,	
a	widefield	Leica	DMI8	with	an	HCX	PL	APO	63×/1.40	(Oil)	objec-
tive	was	used.	The	acquired	 images	were	subsequently	analyzed	
with	the	FIJI	software	(Schindelin	et	al.,	2012).	Measurements	of	
nuclear	immunofluorescence	signal	were	generated	using	a	mask	
drawn	 on	 DAPI	 staining	 to	 define	 nuclear	 bounds.	 Background	
subtractions were then implemented to precisely determine the 
mean	intensity	per	area	of	each	immune-	detected	protein.

4.3  |  Automated cell imaging and feature 
classification

50–70 × 103	IMR90	cells	were	seeded	onto	coverslips	in	6-	well	plates	
and	left	to	grow	at	37°C,	with	5%	CO2	in	MEM	(M4655),	supplemented	
with	 1%	 penicillin/streptomycin	 (Pen/Strep,	 P4333)	 and	 1%	 nones-
sential	amino	acids	(M7145)	all	from	Sigma	Aldrich,	and	10%	fetal	bo-
vine	serum	(FBS,	F7524,	LOT:	BCBX5319)	for	24 h	before	fixation	and	
staining.	For	ICM-	treated	cells,	we	exchanged	the	medium	to	one	sup-
plemented	with	7.5 μM	ICM	after	24 h	and	left	them	to	grow	for	3,	6	or	
9 days	before	fixation,	exchanging	the	medium	daily.	The	cells	treated	
with	ICM	for	6	and	9 days	were	split	once	and	twice,	respectively.	Cells	
were	then	prepared	for	immunofluorescence	as	described	above,	but	
also	incubated	in	a	SiR-	DNA	(Lukinavičius	et	al.,	2015)	staining	solu-
tion	(2 μM	in	PBS-	T)	for	90 min	at	room	temperature.	Afterward,	cells	
were	rinsed	and	washed	twice	for	5 min	with	PBST.	Finally,	coverslips	
with	cells	were	mounted	onto	glass	 slides	 in	MOWIOL.	Thirty	min-
utes	after	mounting,	coverslips	were	sealed	with	clear	nail	varnish	and	
dried	for	20 min	at	room	temperature.

We	acquired	confocal	and	STED	images	on	an	on	a	3D	STED	mi-
croscope	system	from	Abberior	 Instruments	 (Göttingen,	Germany)	
using a 100×	UPlanSApo	1.4	NA	oil	immersion	objective	(Olympus,	
Japan)	 and	pulsed	640 nm	excitation	 and	775 nm	depletion	 lasers.	
To	acquire	a	large	number	of	super	resolution	images	in	an	unbiased	
fashion,	we	automated	 the	operation	of	 the	microscope	using	 the	
specpy	Python	Interface	to	the	Imspector	microscope	control	soft-
ware.	In	our	automation	pipeline,	we	first	continuously	imaged	con-
focal	 overview	 stacks	with	 20%	overlap	 in	 a	 spiral.	 Following	 the	
acquisition	of	 each	overview,	we	detected	nuclei	 in	 the	maximum	
intensity	projection	of	the	tile	and	adjacent	tiles	(stitched	based	on	
their	stage	coordinates)	via	unsupervised	clustering	of	pixels	based	
on	 their	 intensities	 and	Gaussian	 and	 Sobel	 filter	 responses	 using	
k-	Means	 followed	 by	 binary	 erosion	 of	 radius = 3	 to	 remove	 small	
background	 detections.	 For	 all	 connected	 foreground	 regions,	we	
acquired	a	STED	image	of	the	middle	z-	plane	before	continuing	with	
the	 next	 overview	 tile.	 All	 acquired	 images	 as	well	 as	microscope	
metadata	were	saved	in	custom	HDF5-	based	files	during	the	auto-
mated	acquisitions.	Using	this	pipeline,	we	could	run	the	microscope	
unsupervised	for	prolonged	periods	of	time	and	we	typically	imaged	
each	sample	for	12–24 h.

To	extract	features	from	STED	images,	we	proceeded	as	follows:	
For	each	STED	detail	 image,	we	 first	normalized	 the	 intensities	 to	
the	 0.025	 and	 0.995	 quantiles	 and	 then	 performed	 a	 simple	 seg-
mentation	 by	 Li	 thresholding	 on	 a	 strongly	 blurred	 (Gaussian	 blur	
with σ = 16 px)	 version	 of	 the	 image	 followed	 by	 removing	 small	
objects <512 px2	and	filling	holes	smaller	 than	512 px2.	Within	the	
foreground	 area	 we	 calculated	 grey	 level	 co-	occurrence	 matrices	
(GLCMs)	at	distances	∈ {2,	4,	7,	12,	16}	and	angles	∈ {0,	π/2}	and	cal-
culated	all	summary	statistics	available	in	scikit-	image's	greycoprops	
function	 (“contrast,”	 “dissimilarity,”	 “homogeneity,”	 “energy,”	 “cor-
relation”	and	“ASM”)	from	slightly	blurred	(σ = 0.5 px)	versions	of	the	
normalized	images.	In	addition,	we	calculated	the	mean	foreground	
intensity	 in	 both	 the	 original	 and	 normalized	 image,	 the	 standard	
deviation	of	 the	 foreground	 intensity,	 the	number	of	pixels	of	 the	
segmented	 area,	 the	 low	and	high	quantiles	 of	 raw	 image	 intensi-
ties	 used	 in	 normalization,	 as	well	 as	 the	 image	width	 and	 height	
and	 number	 of	 rows	 and	 columns	 composed	wholly	 of	 zeroes	 (an	
indication	of	images	acquired	outside	the	scanner's	field	of	view	or	
shutdown	of	the	detector	due	to	too	high	light	exposure,	which	we	
aimed	to	remove	in	a	subsequent	quality	control	step).	To	distinguish	
good	STED	images	from	erroneous	detections	during	the	automated	
imaging	we	used	machine	learning-	based	quality	control.	We	man-
ually	sorted	493	 images	as	good	 (i.e.,	containing	a	single	complete	
and	in-	focus	nucleus)	or	bad	and	trained	a	Random	Forest	classifier	
on	their	features	(normalized	to	zero	mean	and	unit	variance).	Using	
fivefold	 cross-	validation,	we	 determined	 the	 probability	 threshold	
for	the	good	class	necessary	to	achieve	95%	precision	(true-	positive	
rate)	and	applied	the	classifier	with	this	 threshold	to	all	uncatego-
rized	 images.	 For	 the	 subsequent	 steps,	we	 only	 used	 the	 images	
classified	as	good.

We	then	used	the	features	of	each	cell	(except	auxiliary	ones	like	
the	number	of	blank	rows/columns	or	image	size)	and	performed	a	
two-	dimensional	embedding	using	t-	SNE.	Furthermore,	we	used	the	
features	of	all	young	and	senescent	samples	to	train	a	SVM	classi-
fier	and	applied	it	to	all	treated	samples	to	see	whether	they	would	
be	preferentially	classified	as	young	or	senescent.	However,	in	both	
approaches,	we	arrived	at	inconclusive	results	and	saw	a	strong	de-
pendence	on	individual	replicates.	We	reasoned	that	at	the	fine	scale	
captured	 by	 STED	nanoscopy,	 small	 changes,	 for	 example,	 in	 SiR-	
DNA	 staining	 intensity,	 have	 a	 stronger	 effect	 on	 nuclear	 texture	
than	senescence	state.	The	code	for	our	image	analysis	pipeline	was	
implemented	in	Python	using	the	numpy/scipy	 (Harris	et	al.,	2020),	
scikit-	image	(Van	Der	Walt	et	al.,	2014),	and	scikit-	learn	(Pedregosa	
et	 al.,	2011)	 libraries	 and	 is	 freely	 available	 at	https:// github. com/ 
hoerl	team/	chrom	atin-		textu	re-		senes	cence/		.	 Due	 to	 sample-	to-	
sample	variation	seems	to	overshadow	biological	effects	on	the	na-
noscale	 in	 STED	 images,	we	 decided	 to	 also	 analyze	 the	 confocal	
overview	 images	we	 initially	 acquired	 as	 auxiliary	 data	 during	 the	
automated	imaging.	We	extracted	individual	overview	tiles	from	the	
combined	HDF5	files,	saved	them	as	TIFF	stacks	and	used	BigStitcher	
(Hörl	et	al.,	2019)	to	stitch	(refining	the	stage	positions	recorded	by	
the	microscope)	and	fused	them	into	one	volume	per	acquisition	run.	
We	then	used	Cellpose	to	detect	 individual	nuclei	 in	a	z-	maximum	
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projection	and	calculated	GLCM	texture	features	and	summary	sta-
tistics	(with	distances	∈ {2,	4,	8,	16} px	and	angles	∈ {0,	π/2})	as	well	as	
shape	and	intensity	features	(area,	eccentricity,	and	mean	intensity)	
in	the	z-	projection	for	each	detected	nucleus	individually.	We	nor-
malized	intensities	for	each	image	to	the	(0.025,	0.998)	quantiles	and	
applied	a	small	amount	of	Gaussian	blur	(σ = 0.5 px)	before	extracting	
features.	We	then	proceeded	to	perform	t-	SNE	embedding	as	well	as	
SVM-	based	classification	of	ICM-	treated	cells	based	on	young	and	
old	samples	as	described	for	the	STED	data	above.

4.4  |  RNA isolation, sequencing, and analysis

Proliferating,	senescent	and	ICM-	treated	IMR90s	were	harvested	in	
TRIzol	LS	(Life	Technologies)	and	total	RNA	was	isolated	and	DNase	
I-	treated	 using	 the	 DirectZol	 RNA	 miniprep	 kit	 (Zymo	 Research).	
Following	 selection	 on	 poly	 (dT)	 beads,	 barcoded	 cDNA	 libraries	
were	generated	using	the	TruSeq	RNA	library	Kit	(Illumina)	and	were	
paired-	end	sequenced	to	>50 million	read	pairs	on	a	HiSeq4000	plat-
form	(Illumina).	Default	settings	of	STAR	aligner	(Dobin	et	al.,	2013)	
were	used	to	map	the	raw	reads	to	human	reference	genome	(hg19)	
and	quantification	of	unique	counts	was	done	via	featureCounts	(Liao	
et	al.,	2014).	The	RUVs	function	of	RUVseq	(Risso	et	al.,	2014)	was	
used	to	further	normalize	the	counts,	prior	to	differential	gene	ex-
pression	estimation	using	DESeq2	(Love	et	al.,	2014).	Genes	with	an	
FDR < 0.01	and	an	absolute	(log2)	fold	change	of	>0.6 were deemed 
as	differentially	expressed.	GO	term	enrichment	plots	were	gener-
ated	 using	Metascape	 (http://	metas	cape.	org/	gp/	index.	html)	 (Zhou	
et	al.,	2019).	For	RNA	that	was	later	used	for	qPCR	the	isolation	pro-
cedure	was	the	same	as	the	one	described	above.	cDNA	was	syn-
thesized	 with	 SuperScript™	 II	 Reverse	 Transcriptase	 (Invitrogen™	
Life	Technologies,	18064071)	and	 random	primers	 (Sigma-	Aldrich,	
11034731001)	according	to	the	manufacturer's	protocol.	Full	list	of	
primers	used	for	qPCR	can	be	found	in	Table S2.	Finally,	for	analy-
sis	of	nascent	RNA	in	IMR90	the	“factory	RNA-	Seq”	approach	was	
applied	 on	 5mil	 ICM-	treated	 cells	 (Melnik	 et	 al.,	 2016),	 RNA	 was	
isolated	and	sequenced	as	above,	and	intronic	read	counts	were	ob-
tained	and	differentially	analyzed	for	the	two	conditions	using	the	
iRNAseq	 package	 (Madsen	 et	 al.,	 2015).	 Differentially	 expressed	
genes	from	all	our	RNA-	Seq	experiments	are	listed	in	Table S3.

For	RNAPII	elongation	rates	calculated	from	“factory”	RNA-	Seq	
data,	annotation	files	were	downloaded	from	Ensembl	(https:// www. 
ensem bl. org/ ;	 version	hg19).	The	 following	 filtering	 steps	were	ap-
plied	on	the	 intronic	ENSEMBL	annotation	files.	First,	we	removed	
overlapping	regions	between	introns	and	exons	to	avoid	confound-
ing signals due to variation in splicing or transcription initiation and 
termination. Overlapping introns were merged to remove duplicated 
regions	from	the	analysis.	In	the	next	step,	we	used	STAR	to	detect	
splice	junctions	and	compared	them	with	the	intronic	regions.	Introns	
with	at	 least	five	split	reads	bridging	the	intron	(that	 is,	mapping	to	
the	flanking	exons)	per	condition	were	kept	for	subsequent	analyses.	
When	splice	junctions	were	detected	within	introns,	we	further	sub-
divided	those	introns	accordingly.	The	slope	of	the	intronic	coverage	

was	calculated	in	these	introns	across	all	samples	as	described	(Debès	
et	al.,	2023).	To	avoid	artefacts	due	to	the	different	numbers	of	in-
trons	used	per	sample,	we	always	contrasted	the	same	sets	of	introns	
for	 each	 comparison	 of	 different	 conditions,	 only	 using	 negative	
slopes	across	all	samples.	The	Wilcoxon	signed-	rank	test	with	conti-
nuity	correction	was	used	for	statistical	testing	in	R.

4.5  |  Chromatin immunoprecipitation and qPCR

Proliferating	and	ICM-	treated	IMRO90s	were	cultured	to	80%	con-
fluence	in	15-	cm	plates	and	they	were	cross-	linked	in	15 mM	EGS/
PBS	(ethylene	glycol	bis(succinimidyl	succinate);	Thermo)	for	20 min	
at	room	temperature,	followed	by	fixation	for	40 min	at	4°C	 in	1%	
PFA.	Cells	were	 then	processed	with	 the	ChIP-	IT	High	Sensitivity	
kit	 (Active	 motif)	 according	 to	 the	 manufacturer's	 instructions.	
Chromatin	 was	 sheared	 to	 200–500 bp	 fragments	 via	 sonication	
using	 a	 Bioruptor	 Plus	 (25 cycles,	 30 s	 on/30 s	 off,	 high	 input),	 im-
munoprecipitation	 was	 done	 using	 4 μg	 of	 anti-	HMGB2	 antibody	
(Abcam	 ab67282)	 to	 approx.	 30 μg	 of	 chromatin	 and	 the	 samples	
were	 incubated	overnight	 in	a	rotor	at	4°C.	DNA	was	captured	on	
protein	A/G	agarose	beads	and	purified	using	the	ChIP	DNA	Clean	
&	Concentrator	kit	(Zymo)	and	used	for	qPCR.	Oligos	used	in	qPCR	
are listed in Table S4.

4.6  |  Ribo- Seq and data analysis

High-	throughput	 ribosome	 profiling	 (Ribo-	Seq)	 on	 proliferating,	 se-
nescent	and	ICM-	treated	IMR90s	was	performed	in	collaboration	with	
EIRNA	Bio	 Ltd	 (https:// eirna bio. com)	 according	 to	 their	 established	
protocol	 (Ivanov	et	 al.,	2018).	 Three	 independent	 replicas	of	prolif-
erating,	senescent	or	ICM-	treated	IMR90	were	grown,	harvested	in	
ice-	cold	polysome	isolation	buffer	supplemented	with	cycloheximide,	
and	shipped	to	Ribomaps	for	further	processing	and	library	prepara-
tion.	Roughly	15%	of	each	lysate	was	kept	for	RNA	isolation	and	used	
for	RNA-	Seq	of	poly(A)-	enriched	fractions	on	a	HiSeq2500	platform	
(Illumina).	 After	 sequencing	 of	 both	 Ribo-		 and	mRNA-	Seq	 libraries,	
the	per	base	sequencing	quality	of	each	replicate	passed	the	quality	
threshold,	raw	read	counts	were	assigned	to	each	protein-	coding	open	
reading	frame	(CDS)	for	Ribo-	Seq	and	to	each	transcript	for	mRNA-	
Seq,	and	replicate	correlations	were	tested.	Read	length	distribution	
for	Ribo-	Seq	datasets	fell	within	the	expected	range	(25–35 nt),	show-
ing	strong	periodic	signals	and	an	enrichment	in	annotated	CDSs.	For	
mRNA-	Seq,	read	lengths	ranged	between	47	and	51 nt	and	distributed	
uniformly	across	transcripts.	For	differential	gene	expression	analysis,	
anota2seq	(Oertlin	et	al.,	2019)	was	used.	Changes	in	Ribo-	Seq	data	
depict	changes	in	the	ribosome	occupancy	of	the	annotated	protein-	
coding	CDS,	and	thus,	only	ribosome-	protected	fragments	that	map	
to	the	CDS	were	used	in	the	analysis.	VST	normalized	counts	output-
ted	using	DESeq2	(Love	et	al.,	2014)	and	inputted	into	anota2seq	were	
used	 for	 all	 subsequent	 downstream	analysis.	Differences	 in	 genes	
that	pass	a	default	FDR	threshold	of	15%	were	considered	regulated.	
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Such	significant	differences	are	then	categorized	into	one	of	the	fol-
lowing	three	modes:	(i)	translational:	Changes	in	Ribo-	Seq	that	are	not	
explained	by	changes	 in	RNA-	Seq	and	 imply	changes	at	the	protein	
level	 are	due	 to	 changes	 at	 the	 translational	 level;	 (ii)	mRNA	abun-
dance:	Matching	changes	in	RNA-	Seq	and	Ribo-	Seq	that	infer	changes	
at the protein level are predominantly induced by changes at the tran-
scriptional	 level;	 (iii)	buffering:	 changes	 in	RNA-	Seq	 that	are	not	ex-
plained	by	changes	in	Ribo-	Seq	and	suggest	maintenance	of	constant	
protein levels induced by changes at the transcriptional level and vice 
versa.	Differentially	 translated/buffered	mRNAs	 from	Ribo-	Seq	ex-
periments are listed in Table S5.

4.7  |  Protein extraction, western blotting, and 
mass spectrometry

Proliferating	 and	 ICM-	treated	 IMR90s	 (approx.	 2 × 106	 per	 condition)	
were	gently	scraped	off	15-	cm	dishes.	Cells	were	then	pelleted	for	5 min	
at	1200 rpm.	The	supernatant	was	discarded	and	pellets	were	lysed	in	
150 u	of	RIPA	lysis	buffer	(20 mM	Tris-	HCl	pH 7.5,	150 mM	NaCl,	1 mM	
EDTA	 pH 8.0,	 1 mM	EGTA	 pH 8.0,	 1%	NP-	40,	 1%	 sodium	 deoxycho-
late)	containing	1×	protease	inhibitor	cocktail	(Roche)	for	30 min	on	ice.	
Sample	were	then	sonicated	in	low	input	for	three	cycles	(30 s	on/30 s	
off)	 and	centrifuged	 for	15 min	at	>15,000 × g.	Then	 the	 supernatant	
was collected and the protein concentration was measured using the 
Pierce	BCA	Protein	Assay	Kit	 (Thermo	Fisher	Scientific).	Rabbit	poly-
clonal	anti-	HMGB2	(1:1000;	Abcam	ab67282);	rabbit	polyclonal	anti-	
CTCF	(1:500;	Active	motif	61311);	rabbit	polyclonal	anti-	EZH2	(1:500;	
Active	motif	39901);	rabbit	polyclonal	anti-	H3	(1:500;	Abcam	ab1791);	
mouse	monoclonal	anti-	tubulin	(1:1000;	Abcam	ab7291)	were	used	for	
blotting.	For	whole-	cell	proteomics,	protein	extracts	in	RIPA	buffer	were	
analyzed	by	the	CECAD	proteomic	core	facility	in	biological	triplicates	
on	a	Q-	Exactive	Plus	Orbitrap	platform	(Thermo	Scientific)	coupled	to	
an	EASY	nLc	1000	UPLC	system	with	column	lengths	of	up	to	50 cm.	
All	proteins	discovered	via	whole-	cell	mass	spectrometry	are	 listed	 in	
Table S6.	For	mass	spectrometry	of	fractionated	nuclear	and	cytosolic	
IMR90	extracts,	the	same	procedure	was	followed	with	the	addition	of	
a	standard	nuclear	isolation	prep	as	described	(Zirkel	et	al.,	2018),	and	
all proteins discovered are listed in Table S7.

4.8  |  Cleavage under targets and tagmentation 
(CUT&Tag)

0.5 million	 cells	were	 lifted	 from	plates	 using	Accutase,	 fixed	with	
0.3%	PFA/PBS	for	2 min	at	RT	and	then	quenched	with	0.125 M	ice	
cold	glycine	for	5 min	at	RT.	Samples	were	then	processed	accord-
ing	 to	 manufacturer's	 instructions	 (Active	 Motif).	 Samples	 were	
paired-	end	 sequenced	 to	 obtain	 more	 than	 5 × 106	 reads,	 which	
were	 then	 processed	 exactly	 as	 described	 in	 https://	yezhe	ngstat.	
github.	io/	CUTTag_	tutor	ial/	.	Briefly,	paired-	end	reads	were	trimmed	
for	 adapter	 removal	 and	mapped	 to	human	 (hg38)	 and	Escherichia 
coli	 reference	genomes	 (ASM584v2)	using	Bowtie	2	 (Langmead	&	

Salzberg,	2012).	E. coli	mapped	reads	were	then	quantified	and	used	
for	 calibrating	 human-	mapped	 reads.	 Peak	 calling	 was	 performed	
using	 a	multi-	FDR-	tryout	method	 (FDR	<0.01 to <0.1).	 For	 CTCF	
and	 SMC1A,	 an	 FDR	 <0.01	 was	 selected	 and	 only	 CTCF	 peaks	
with	a	canonical	CTCF	motif	were	considered	 (Grant	et	al.,	2011).	
Motif	 search	was	 conducted	by	 utilizing	 Fimo	5.4.1	 of	 the	MEME	
suite	 (https://	meme-		suite.	org/	meme/	doc/	fimo.	html)	 against	 a	 ran-
dom	Markov	background	model	which	was	created	by	running	the	
fasta- get- markov	command	of	the	aforementioned	suite,	on	random	
sequences	that	corresponded	to	the	length	and	the	chromosome	of	
the	query	CTCF	peaks,	for	each	sample.	Heatmaps	were	generated	
using	deepTools	(Ramírez	et	al.,	2014),	while	shared	and	condition-	
specific	 CTCF	 and	 SMC1A	 peaks	 were	 called	 using	 signal	 in	 the	
100 bp	around	the	summit	of	each	peak	(as	calculated	via	SEACR).

4.9  |  Micro- C and data analysis

Micro-	C	was	 performed	 using	 the	Micro-	C	v1.0	 kit	 in	 collaboration	
with	Dovetail	Genomics	as	per	manufacturer's	 instructions.	Micro-	C	
libraries	 (at	 least	three	per	each	biological	replicate)	that	passed	QC	
criteria	were	pooled	 and	paired-	end	 sequenced	on	 a	NovaSeq6000	
platform	 (Illumina)	 to	>600 million	 read	 pairs	 per	 replicate.	Micro-	C	
contact	 matrices	 were	 produced	 using	 Dovetail	 Genomics	 pipeline	
(https://	micro	-		c.	readt	hedocs.	io/	en/	latest/	fastq_	to_	bam.	html).	In	brief,	
read	 pairs	 were	 mapped	 to	 human	 reference	 genome	 hg38	 using	
BWA,	 after	which	 low	mapping	 quality	 (<40)	 reads	 and	 PCR	 dupli-
cates	were	 filtered	 out	 using	 the	MarkDuplicates	 function	 in	 Picard	
tools	(v2.20.7),	and	read	coverage	tracks	(BigWig)	were	generated	and	
normalized	with	the	RPCG	parameter	using	the	bamCoverage	function	
of	deepTools2	v3.5.1	(Ramírez	et	al.,	2014).	Compartment	boundaries	
for	each	sample	corresponded	to	the	1 bp	of	adjacent	bins	on	which	
compartment	 changed	 from	A	 to	B	or	 from	B	 to	A.	The	 interaction	
decay plot was created by cooltools	 0.5.1	 (https:// coolt ools. readt he-
docs.	io/	en/	latest/	noteb	ooks/	conta	cts_	vs_	dista	nce.	html).	 The	 eigen-
values,	needed	for	the	saddle	plots,	were	computed	with	the	cooltools 
call- compartments	 command	 at	 10-	kbp	 resolution	 and	 the	 expected	
interactions	were	computed	with	cooltools	compute-	expected	com-
mand	at	the	same	resolution.	The	saddle	plot	was	created	with	cool-
tools	compute-	saddle	using	100	bins	as	described:	https:// coolt ools. 
readt	hedocs.	io/	en/	latest/	noteb	ooks/	compa	rtmen	ts_	and_	saddl	es.	
html.	Finally,	we	used	coolpuppy	0.9.5	(https:// coolp uppy. readt hedocs. 
io/ en/ latest/ )	to	generate	all	aggregate	plots.	For	loop	calling,	we	used	
a	multi-	tool	(HiCCUPS,	SIP,	and	mustache)	and	a	multi-	resolution	(5-		
and	 10-	kbp)	 approach	 as	 previously	 described	 (Hsieh	 et	 al.,	 2020; 
Krietenstein	et	 al.,	2020).	 Loop	 lists	 coming	 from	each	of	 the	 three	
different	tools	and	across	the	two	resolutions	were	merged	using	the	
pgltools	intersect	command	with	a	distance	tolerance	of	1 bp.	This	pro-
cedure results in considering loops that were called in adjacent bins 
across	 different	 resolutions	 or	 tools	 as	 being	 shared,	 while	 unique	
loops	are	considered	 those	 that	exhibit	a	distance	corresponding	 to	
at	 least	one	bin	 size	 (5-		or	10-	kbp)	 across	 the	different	 loop-	calling	
approaches.	In	cases	of	shared	loops	across	the	two	resolutions,	the	
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5 kb	resolution	coordinates	were	kept	for	further	analysis.	In	order	to	
find	condition-	specific	loops	we	furtherly	annotated	them	with	ICM-	
specific	 CTCF	 peaks.	 To	 detect	 ICM	 enriched	 CTCF	 peaks,	we	 fur-
therly	filtered	peaks	based	on	the	control	and	ICM	CUT&TAG	signal	
enclosed	in	regions	around	the	summits	of	ICM	CTCF	peaks.	In	more	
detail,	we	extracted	the	control	and	ICM	depth-	normalized	CUT&TAG	
signal	of	regions	100 bp	around	the	summits	of	peaks	by	utilizing	the	
multiBigwigSummary	 command	 of	 Deeptools.	 The	 CTCF	 peaks	 that	
we	considered	in	the	downstream	analysis	were	those	that	exhibited	
less	than	the	mean	control	CUT&TAG	signal	with	higher	or	equal	to	1-	
fold	difference	compared	to	the	corresponding	ICM	signal.	2628	ICM	
CTCF	peaks	fulfilled	these	criteria	and	were	furtherly	used	to	annotate	
both	control	and	 ICM	 loops.	All	 intersections	were	performed	using	
pgltools	intersect1D	without	any	distance	tolerance	for	CTCF	anchors.	
We	 considered	 loops	 as	CTCF-	associated	when	 at	 least	 one	 of	 the	
anchors	overlapped	a	CTCF	peak	of	the	subset	described	above.	The	
rest	of	the	loops	were	annotated	as	non-	CTCF.	We	furtherly	divided	
the	loops	into	condition-	specific	and	shared	loops.	Condition-	specific	
loops	had	at	least	one	unique	anchor.	This	analysis	was	done,	as	de-
scribed	before,	by	utilizing	the	pgltools	 intersect	command	with	1 bp	
tolerance	distance	for	both	the	shared	and	the	unique	loops.	All	code	
for	Micro-	C	analysis	can	be	found	at	https://	github.	com/	shuzh	angco	
urage/		Micro	-		C-		CUT-		tag/	tree/	v1.0.	0.

4.10  |  Single- cell RNA- Seq

Proliferating,	 ICM-	treated,	 and	 senescent	 IMR90s	 (8 × 105 cells/
condition)	were	grown	 to	80%	confluency,	harvested	with	 trypsin	

and	froze	at	−80°C.	Single-	cell	RNA-	Seq	was	performed	using	 the	
10×	Genomics	kit	in	collaboration	with	Active	Motif.	Libraries	that	
passed	QC	criteria	were	paired-	end	sequenced	to	at	 least	250 mil-
lion	reads	per	library.	All	downstream	analysis	was	performed	using	
Seurat	(Satija	et	al.,	2015).

4.11  |  610CP- C6- ICM synthesis

Synthesis	 was	 performed	 as	 described	 previously	 with	 the	 minor	
modifications	 (Isomura	 et	 al.,	 2001).	 0.25 g	 (1.15 mmol)	 tert-	butyl	
(6-	hydroxyhexyl)	carbamate	(Molecule	2	in	the	scheme	below)	was	
dissolved	 in	 3.2 mL	 dichloromethane	 under	 an	 argon	 atmosphere	
and	cooled	to	0°C	in	an	ice	bath.	Next,	242 μL	(1.73 mmol)	of	trieth-
ylamine	 and	98 μL	 (1.26 mmol)	 of	mesyl	 chloride	were	 added.	 The	
reaction	mixture	was	 then	 allowed	 to	warm	 to	 room	 temperature	
and	stirred	for	2 h.	After	the	reaction	was	complete,	it	was	washed	
with	 distilled	 water,	 saturated	 NaCl	 solution,	 dried	 over	 Na2SO4,	
filtered,	 and	 the	 solvent	 removed	 on	 a	 rotary	 evaporator	 yielding	
yellow	oil	(359 mg).	The	residue	was	dissolved	in	4.8 mL	of	dry	ace-
tonitrile	under	argon,	863 mg	(5.76 mmol)	of	sodium	iodide	added	at	
room	temperature;	the	mixture	stirred	for	18 h,	and	the	solvent	was	
then	 removed	 on	 a	 rotary	 evaporator.	 The	 residue	 was	 dissolved	
in	20 mL	ethyl	acetate,	washed	with	saturated	NaCl	solution,	dried	
over	Na2SO4,	filtered	and	the	solvent	removed	on	a	rotary	evapora-
tor	 to	 obtain	321 mg	of	 crude	product	 as	 a	 yellow	oil.	Next,	 flash	
chromatography	was	performed	in	n-	hexane/EtOAc	(91:9)	to	obtain	
tert-	butyl	 (6-	iodohexyl)	 carbamate	 (mol.	 3)	 294.8 mg	 (0.90 mmol,	
78.3%)	as	a	colorless	oil.
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Next,	 12.5 mg	 (33.1 μmol)	 inflachromene	 (Mol.	1)	was	 dissolved	 in	
200 μL	dry	DMF	under	argon,	cooled	to	0°C,	and	1.7 mg	(42.5 μmol)	
of	NaH	 (60%	 in	mineral	oil)	 added	 followed	by	 stirring	 for	10 min.	
Next,	13 mg	(40 μmol)	tert-	butyl	(6-	iodohexyl)	carbamate	(Mol.	3)	in	
40 μL	dry	DMF	was	added	dropwise,	and	the	mixture	stirred	over-
night	at	room	temperature.	After	the	reaction	was	complete,	30 μL	
of	 distilled	 water	 were	 added,	 the	 reaction	 mixture	 diluted	 with	
2 mL	saturated	aq.	NaCl	solution	and	extracted	with	dichlorometh-
ane.	The	combined	organic	phase	was	washed	with	saturated	NaCl	
solution,	dried	over	Na2SO4,	filtered,	and	the	solvent	removed	on	a	
rotary	evaporator	to	obtain	26.7 mg	of	crude	product	as	a	yellow	oil.	
Next,	Flash	chromatography	was	performed	using	Biotage	HC	Duo	
silica	column	and	15%–50%	EtOAc	in	n-	Hexane	gradient	to	obtain	
7.5 mg	(13.0 μmol,	39.3%	yield)	ICM-	C6-	NBoc	(Mol.	4)	as	a	pale	yel-
low solid.

2.0 mg	 (3.47 μmol)	 ICM-	C6-	NBoc	 (Mol.	 4)	 was	 dissolved	 in	
17.3 μL	 of	 dry	 ethyl	 acetate	 under	 argon,	 cooled	 to	 0°C	 using	 an	
ice	bath,	and	34.7 μL	(34.68 μmol)	of	1 M	HCl	in	ethyl	acetate	were	
added	followed	by	stirring	for	6 h	at	 room	temperature.	After	the	
reaction	was	complete,	the	solvent	was	removed	on	the	Speedvac	
to	obtain	0.7 mg	of	yellow-	green	oil	and	further	HPLC	purified	using	
Interchim	puriFlash®	C18-	AQ	5 μm,	21.2 × 250 mm	column	with	a	
solvent	gradient	from	water	with	0.1%	TFA	to	acetonitrile,	and	ob-
tained	 ICM-	C6-	NH2	 (5)	 as	a	white	 solid	 (0.18 mg,	0.35 μmol,	10%	
yield).

Finally,	144 μg	 (255 nmol)	6-	610CP-	NHS	was	dissolved	 in	25 μL	
dry	DMSO	under	argon.	Next,	3.5 μL	 (2.04 μmol)	10%	 (v/v)	DIPEA	
in	dry	DMSO	and	180 μg	(305 nmol)	ICM-	C6-	NH2	(Mol.	5)	in	25 μL	
dry	DMSO	were	added,	and	the	reaction	mixture	stirred	for	3 h	at	
room	 temperature.	 After	 the	 reaction	 was	 complete,	 the	 mixture	
was	 frozen,	 lyophilized	 and	 separated	 using	 preparative	 HPLC:	
Interchim	 puriFlash®	C18-	AQ	 5 μm,	 21.2 × 250 mm	 column	with	 a	
solvent	gradient	from	water	with	0.1%	TFA	to	acetonitrile,	obtaining	
160 μg	(175 nmol,	69%	yield)	ICM-	C6-	610CP	(Mol.	6)	as	a	blue	solid.	
Compound	purity	characterization	in	shown	in	Figure S8.

4.12  |  Statistical testing

p-	values	associated	with	Student's	t	tests,	Fischer's	exact	tests	and	
with	 the	 Wilcoxon–Mann–Whitney	 tests	 were	 calculated	 using	
GraphPad	 (https:// graph pad. com/ ).	 Unless	 otherwise	 stated,	 p- 
values <0.01	were	deemed	as	statistically	significant.
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